BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 9256290)

  • 1. Membrane cation and anion transport activities in erythrocytes of hereditary spherocytosis: effects of different membrane protein defects.
    De Franceschi L; Olivieri O; Miraglia del Giudice E; Perrotta S; Sabato V; Corrocher R; Iolascon A
    Am J Hematol; 1997 Jul; 55(3):121-8. PubMed ID: 9256290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild spherocytosis and altered red cell ion transport in protein 4. 2-null mice.
    Peters LL; Jindel HK; Gwynn B; Korsgren C; John KM; Lux SE; Mohandas N; Cohen CM; Cho MR; Golan DE; Brugnara C
    J Clin Invest; 1999 Jun; 103(11):1527-37. PubMed ID: 10359562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red cell membrane Na+ transport systems in hereditary spherocytosis: relevance to understanding the increased Na+ permeability.
    Vives Corrons JL; Besson I
    Ann Hematol; 2001 Sep; 80(9):535-9. PubMed ID: 11669303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocyte membrane protein destabilization versus clinical outcome in 160 Portuguese Hereditary Spherocytosis patients.
    Rocha S; Costa E; Rocha-Pereira P; Ferreira F; Cleto E; Barbot J; Quintanilha A; Belo L; Santos-Silva A
    Br J Haematol; 2010 Jun; 149(5):785-94. PubMed ID: 20346007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Splenectomy prolongs in vivo survival of erythrocytes differently in spectrin/ankyrin- and band 3-deficient hereditary spherocytosis.
    Reliene R; Mariani M; Zanella A; Reinhart WH; Ribeiro ML; del Giudice EM; Perrotta S; Iolascon A; Eber S; Lutz HU
    Blood; 2002 Sep; 100(6):2208-15. PubMed ID: 12200387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Erythrocyte membrane and hereditary spherocytosis].
    Ideguchi H
    Rinsho Byori; 1990 Apr; 38(4):360-4. PubMed ID: 2195190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniquely higher incidence of isolated or combined deficiency of band 3 and/or band 4.2 as the pathogenesis of autosomal dominantly inherited hereditary spherocytosis in the Japanese population.
    Inoue T; Kanzaki A; Yawata A; Wada H; Okamoto N; Takahashi M; Sugihara T; Yamada O; Yawata Y
    Int J Hematol; 1994 Dec; 60(4):227-38. PubMed ID: 7894027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red cell membrane protein abnormalities in hereditary spherocytosis in Brazil.
    Saad ST; Costa FF; Vicentim DL; Salles TS; Pranke PH
    Br J Haematol; 1994 Oct; 88(2):295-9. PubMed ID: 7803273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of Na/K/2Cl cotransport and bumetanide binding in avian erythrocytes by protein phosphorylation and dephosphorylation. Effects of kinase inhibitors and okadaic acid.
    Pewitt EB; Hegde RS; Haas M; Palfrey HC
    J Biol Chem; 1990 Dec; 265(34):20747-56. PubMed ID: 2147426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic defect of erythrocyte band 4.2 protein associated with hereditary spherocytosis.
    Ideguchi H; Nishimura J; Nawata H; Hamasaki N
    Br J Haematol; 1990 Mar; 74(3):347-53. PubMed ID: 2139792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of human erythrocyte Band 3 with cytoskeletal components.
    Hsu L; Morrison M
    Arch Biochem Biophys; 1983 Nov; 227(1):31-8. PubMed ID: 6685459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hereditary spherocytosis: identification of several HS families with ankyrin and band 3 deficiency in a population of southwestern Poland.
    Bogusławska DM; Heger E; Chorzalska A; Nierzwicka M; Hołojda J; Swiderska A; Straburzyńska A; Paździor G; Langner M; Sikorski AF
    Ann Hematol; 2004 Jan; 83(1):28-33. PubMed ID: 14517693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormalities of erythrocyte membrane proteins in Korean patients with hereditary spherocytosis.
    Lee YK; Cho HI; Park SS; Lee YJ; Ra E; Chang YH; Hur M; Shin HY; Ahn HS
    J Korean Med Sci; 2000 Jun; 15(3):284-8. PubMed ID: 10895969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance to osmotic lysis in BXD-31 mouse erythrocytes: association with upregulated K-Cl cotransport.
    Armsby CC; Stuart-Tilley AK; Alper SL; Brugnara C
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C866-77. PubMed ID: 8638668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S; Hoffman JF
    J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Li+-Na+ exchange and Na+-K+-Cl- cotransport systems in essential hypertension.
    Canessa M; Brugnara C; Escobales N
    Hypertension; 1987 Nov; 10(5 Pt 2):I4-10. PubMed ID: 2824364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Band 3 deficiency as a cause of hereditary spherocytosis].
    Wada H; Suemori S; Nakanishi H; Sugihara T
    Rinsho Ketsueki; 2015 Jul; 56(7):837-45. PubMed ID: 26251147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport and adenosine triphosphatase activities of erythrocyte membranes in congenital spherocytosis.
    Johnsson R; Santaholma S; Saris NE
    Scand J Clin Lab Invest; 1978 Apr; 38(2):121-5. PubMed ID: 148726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na(+)-K(+)-2Cl- cotransport, Na+/H+ exchange, and cell volume in ferret erythrocytes.
    Mairbäurl H; Herth C
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1603-11. PubMed ID: 8944644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.