These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9257108)

  • 1. Calcium paradox in guinea-pig ventricular myocytes.
    Suleiman MS; Edmond JJ; Bulstrode GK
    Exp Physiol; 1997 Jul; 82(4):657-64. PubMed ID: 9257108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium paradox in newborn and adult guinea-pig hearts: changes in intracellular taurine and the effects of extracellular magnesium.
    Suleiman MS; Chapman RA
    Exp Physiol; 1993 Jul; 78(4):503-16. PubMed ID: 8398104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calcium paradox in isolated guinea-pig ventricular myocytes: effects of membrane potential and intracellular sodium.
    Rodrigo GC; Chapman RA
    J Physiol; 1991 Mar; 434():627-45. PubMed ID: 2023134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lemakalim on action potentials, intracellular calcium, and contraction in guinea pig and human cardiac myocytes.
    Jiang C; Mochizuki S; Poole-Wilson PA; Harding SE; MacLeod KT
    Cardiovasc Res; 1994 Jun; 28(6):851-7. PubMed ID: 7923291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the sodium pump and sodium-calcium exchange in recovery from calcium overload in guinea-pig ventricular myocytes.
    Minezaki KK; Chapman RA
    Exp Physiol; 1993 Jul; 78(4):545-8. PubMed ID: 8398108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phospholipase A2 inhibitor (Ro 31-4493) prevents protein loss associated with the calcium paradox in isolated guinea pig hearts without effect on contracture, calcium overload, or the currents through L-type calcium channels.
    Suleiman MS; Minezaki KK; Ban K; Chapman RA
    Cardiovasc Res; 1994 May; 28(5):650-5. PubMed ID: 8025908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and morphology of calcium-tolerant feline ventricular myocytes.
    Silver LH; Hemwall EL; Marino TA; Houser SR
    Am J Physiol; 1983 Nov; 245(5 Pt 1):H891-6. PubMed ID: 6638207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of extracellular ions and modulators of calcium transport on survival of tert-butyl hydroperoxide exposed cardiac myocytes.
    Castro GJ; Bhatnagar A
    Cardiovasc Res; 1993 Oct; 27(10):1873-81. PubMed ID: 8275538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Na+-activated K+ channel contributes to K+ efflux in Na+-loaded guinea-pig but not rat ventricular myocytes.
    Lawrence CL; Rodrigo GC
    Pflugers Arch; 2001 Jul; 442(4):595-602. PubMed ID: 11510893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A decrease of both [Ca2+]e and [H+]e produces cell damage in the perfused rat heart.
    Diederichs F
    Cell Calcium; 1997 Dec; 22(6):487-96. PubMed ID: 9502198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the antiarrhythmic actions of magnesium in single guinea-pig ventricular myocytes.
    Song Y; Liu QY; Vassalle M
    Clin Exp Pharmacol Physiol; 1996 Sep; 23(9):830-8. PubMed ID: 8911722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in mitochondrial function induced in isolated guinea-pig ventricular myocytes by calcium overload.
    Minezaki KK; Suleiman MS; Chapman RA
    J Physiol; 1994 May; 476(3):459-71. PubMed ID: 8057254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the function of adult guinea-pig ventricular myocytes following co-culture with neonatal rat myocytes.
    Kent NS; Davia K; Harding SE
    Basic Res Cardiol; 1999 Feb; 94(1):9-14. PubMed ID: 10097825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of calcium on cardiac anaphylaxis in guinea-pig Langendorff heart preparations.
    Tanz RD; Kettelkamp N; Hirshman CA
    Agents Actions; 1985 Jul; 16(5):415-24. PubMed ID: 4050619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histamine release in acute coronary occlusion-reperfusion in isolated guinea-pig heart.
    Masini E; Giannella E; Bianchi S; Palmerani B; Pistelli A; Mannaioni PF
    Agents Actions; 1988 Apr; 23(3-4):266-9. PubMed ID: 2455999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of phosphodiesterase inhibitor and isoproterenol in human and guinea-pig ventricular tissues and myocytes.
    Cheng PY; Lin CI; Lee FY; Chen YC; Lu HH
    Chin J Physiol; 1995; 38(3):185-91. PubMed ID: 8846728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oxygen free radicals on isolated cardiac myocytes from guinea-pig ventricle: electrophysiological studies.
    Coetzee WA; Opie LH
    J Mol Cell Cardiol; 1992 Jun; 24(6):651-63. PubMed ID: 1518081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiarrhythmic effects of magnesium on rat papillary muscle and guinea pig ventricular myocytes.
    Aomine M; Tatsukawa Y; Yamato T; Yamasaki S
    Gen Pharmacol; 1999 Jan; 32(1):107-14. PubMed ID: 9888262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects of internal [Mg2+] on IK1 in cat and guinea-pig cardiac ventricular myocytes.
    Martin RL; Koumi S; Ten Eick RE
    J Mol Cell Cardiol; 1995 Jan; 27(1):673-91. PubMed ID: 7760386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histamine and lactate dehydrogenase (LDH) release in ischemic myocardium of the guinea-pig.
    Masini E; Giannella E; Bianchi S; Mannaioni PF
    Agents Actions; 1987 Apr; 20(3-4):281-3. PubMed ID: 2440279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.