These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9257192)

  • 1. Differential effects of tamoxifen-like compounds on osteoclastic bone degradation, H(+)-ATPase activity, calmodulin-dependent cyclic nucleotide phosphodiesterase activity, and calmodulin binding.
    Williams JP; McDonald JM; McKenna MA; Jordan SE; Radding W; Blair HC
    J Cell Biochem; 1997 Sep; 66(3):358-69. PubMed ID: 9257192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of avian osteoclastic H+ -ATPase and bone resorption by tamoxifen and calmodulin antagonists. Effects independent of steroid receptors.
    Williams JP; Blair HC; McKenna MA; Jordan SE; McDonald JM
    J Biol Chem; 1996 May; 271(21):12488-95. PubMed ID: 8647856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tamoxifen inhibits phorbol ester stimulated osteoclastic bone resorption: an effect mediated by calmodulin.
    Williams JP; McKenna MA; Thames AM; McDonald JM
    Biochem Cell Biol; 2000; 78(6):715-23. PubMed ID: 11206583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cyclosporine on osteoclast activity: inhibition of calcineurin activity with minimal effects on bone resorption and acid transport activity.
    Williams JP; McKenna MA; Thames AM; McDonald JM
    J Bone Miner Res; 2003 Mar; 18(3):451-7. PubMed ID: 12619929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bone-specific estrogen centchroman inhibits osteoclastic bone resorption in vitro.
    Hall TJ; Nyugen H; Schaueblin M; Fournier B
    Biochem Biophys Res Commun; 1995 Nov; 216(2):662-8. PubMed ID: 7488162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cell culture time and bone matrix exposure on calmodulin content and ATP-dependent cell membrane acid transport in avian osteoclasts and macrophages.
    Williams JP; Dong SS; Whitaker CH; Jordan SE; Blair HC
    J Cell Physiol; 1996 Dec; 169(3):411-9. PubMed ID: 8952690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin-like activity in mycobacteria.
    Salih FA; Kaushik NK; Sharma P; Choudary GV; Murthy PS; Venkitasubramanian TA
    Indian J Biochem Biophys; 1991; 28(5-6):491-5. PubMed ID: 1667396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2(+)-dependent binding of tamoxifen to calmodulin isolated from bovine brain.
    Lopes MC; Vale MG; Carvalho AP
    Cancer Res; 1990 May; 50(9):2753-8. PubMed ID: 2139360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine eye: high calmodulin affinity isozyme immunologically related to the brain 60-kDa isozyme.
    Sharma RK; Tan Y; Raju RV
    Arch Biochem Biophys; 1997 Mar; 339(1):40-6. PubMed ID: 9056231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of calmodulin and protein kinase C antagonists on bone resorption and acid transport activity.
    Williams JP; Thames AM; McKenna MA; McDonald JM
    Calcif Tissue Int; 2003 Sep; 73(3):290-6. PubMed ID: 14667143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic lead and calcium interact positively in activation of calmodulin.
    Kern M; Wisniewski M; Cabell L; Audesirk G
    Neurotoxicology; 2000 Jun; 21(3):353-63. PubMed ID: 10894125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of protein kinase C and calmodulin by the geometric isomers cis- and trans-tamoxifen.
    O'Brian CA; Ioannides CG; Ward NE; Liskamp RM
    Biopolymers; 1990 Jan; 29(1):97-104. PubMed ID: 2158363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amantadine: an antiparkinsonian agent inhibits bovine brain 60 kDa calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme.
    Kakkar R; Raju RV; Rajput AH; Sharma RK
    Brain Res; 1997 Feb; 749(2):290-4. PubMed ID: 9138729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilar mechanisms of action of anticalmodulin drugs: quantitative analysis.
    Orosz F; Telegdi M; Liliom K; Solti M; Korbonits D; Ovádi J
    Mol Pharmacol; 1990 Dec; 38(6):910-6. PubMed ID: 2147457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of beta-endorphin and other opioid peptides with calmodulin.
    Sellinger-Barnette M; Weiss B
    Mol Pharmacol; 1982 Jan; 21(1):86-91. PubMed ID: 6290868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of bone resorption and osteoclast survival by nitric oxide: possible involvement of NMDA-receptor.
    Mentaverri R; Kamel S; Wattel A; Prouillet C; Sevenet N; Petit JP; Tordjmann T; Brazier M
    J Cell Biochem; 2003 Apr; 88(6):1145-56. PubMed ID: 12647297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metofenazate as a more selective calmodulin inhibitor than trifluoperazine.
    Tkachuk VA; Baldenkov GN; Feoktistov IA; Men'shikov MY; Quast U; Herzig JW
    Arzneimittelforschung; 1987 Sep; 37(9):1013-7. PubMed ID: 2449225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel calcium binding protein in Mycobacterium tuberculosis--potential target for trifluoperazine.
    Koul S; Somayajulu A; Advani MJ; Reddy H
    Indian J Exp Biol; 2009 Jun; 47(6):480-8. PubMed ID: 19639701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 microT magnetostatic fields.
    Liboff AR; Cherng S; Jenrow KA; Bull A
    Bioelectromagnetics; 2003 Jan; 24(1):32-8. PubMed ID: 12483663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin antagonistic action of new 1,5-benzothiazepines derived from diltiazem.
    Suzuki T; Ohashi M; Takaiti O; Harigaya S
    Arzneimittelforschung; 1994 Jan; 44(1):3-6. PubMed ID: 8135875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.