These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Substrate specificity and other properties of DOPA decarboxylase from guinea pig kidneys. Srinivasan K; Awapara J Biochim Biophys Acta; 1978 Oct; 526(2):597-604. PubMed ID: 309771 [TBL] [Abstract][Full Text] [Related]
5. Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Bertoldi M; Borri Voltattorni C Biochem J; 2000 Dec; 352 Pt 2(Pt 2):533-8. PubMed ID: 11085948 [TBL] [Abstract][Full Text] [Related]
6. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Dominici P; Moore PS; Castellani S; Bertoldi M; Voltattorni CB Protein Sci; 1997 Sep; 6(9):2007-15. PubMed ID: 9300500 [TBL] [Abstract][Full Text] [Related]
7. Chlorpromazine-induced accumulation of pyridoxal-5'-phosphate and activation of the decarboxylase of aromatic amino acids in rat brain. Gey KF; Burkard WP Ann N Y Acad Sci; 1969 Sep; 166(1):213-24. PubMed ID: 5308031 [No Abstract] [Full Text] [Related]
9. Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase. Bertoldi M; Gonsalvi M; Contestabile R; Voltattorni CB J Biol Chem; 2002 Sep; 277(39):36357-62. PubMed ID: 12118007 [TBL] [Abstract][Full Text] [Related]
10. Effect of analogs of phenylalanine and tryptophan on kinetics of DOPA decarboxylase in rat brain. De Ropp RS; Furst A Brain Res; 1966 Oct; 2(4):323-32. PubMed ID: 5298124 [No Abstract] [Full Text] [Related]
11. Pig kidney dopa decarboxylase. Structure and function. Dominici P; Filipponi P; Schininà ME; Barra D; Borri Voltattorni C Ann N Y Acad Sci; 1990; 585():162-72. PubMed ID: 2162642 [No Abstract] [Full Text] [Related]
12. Interaction of human Dopa decarboxylase with L-Dopa: spectroscopic and kinetic studies as a function of pH. Montioli R; Cellini B; Dindo M; Oppici E; Voltattorni CB Biomed Res Int; 2013; 2013():161456. PubMed ID: 23781496 [TBL] [Abstract][Full Text] [Related]
13. Reaction of dopa decarboxylase with alpha-methyldopa leads to an oxidative deamination producing 3,4-dihydroxyphenylacetone, an active site directed affinity label. Bertoldi M; Dominici P; Moore PS; Maras B; Voltattorni CB Biochemistry; 1998 May; 37(18):6552-61. PubMed ID: 9572873 [TBL] [Abstract][Full Text] [Related]
14. Pyridoxal 5'-phosphate enzymes. Influence of substrate concentration on the pH optimum of enzyme reactions involving transaldimination. Håkanson R Hoppe Seylers Z Physiol Chem; 1967 Dec; 348(12):1730-3. PubMed ID: 5586926 [No Abstract] [Full Text] [Related]
15. Theoretical studies on the pyridoxal-5'-phosphate dependent enzyme dopa decarboxylase: effect of thr 246 residue on the co-factor-enzyme binding and reaction mechanism. Chakrabarty K; Gupta SN; Das GK; Roy S Indian J Biochem Biophys; 2012 Jun; 49(3):155-64. PubMed ID: 22803330 [TBL] [Abstract][Full Text] [Related]
16. Multiple roles of the active site lysine of Dopa decarboxylase. Bertoldi M; Voltattorni CB Arch Biochem Biophys; 2009 Aug; 488(2):130-9. PubMed ID: 19580779 [TBL] [Abstract][Full Text] [Related]
17. Dopa decarboxylase exhibits low pH half-transaminase and high pH oxidative deaminase activities toward serotonin (5-hydroxytryptamine). Bertoldi M; Voltattorni CB Protein Sci; 2001 Jun; 10(6):1178-86. PubMed ID: 11369856 [TBL] [Abstract][Full Text] [Related]
18. The syntheses and substrate specificity for mammalian dihydroxyphenylalanine decarboxylase of 3-, 4-, 5-, and 6-methyl-2-hydroxyphenylalanines and the substrate specificity of 3-, 5-, and 6-methyl-2,4-dihydroxyphenylalanines for the enzyme. Bower RH; Lambooy JP J Med Chem; 1969 Nov; 12(6):1028-30. PubMed ID: 5351443 [No Abstract] [Full Text] [Related]
19. Acid-base chemistry of the reaction of aromatic L-amino acid decarboxylase and dopa analyzed by transient and steady-state kinetics: preferential binding of the substrate with its amino group unprotonated. Hayashi H; Tsukiyama F; Ishii S; Mizuguchi H; Kagamiyama H Biochemistry; 1999 Nov; 38(47):15615-22. PubMed ID: 10569946 [TBL] [Abstract][Full Text] [Related]
20. Aromatic L-amino acid decarboxylase: conformational change in the flexible region around Arg334 is required during the transaldimination process. Ishii S; Hayashi H; Okamoto A; Kagamiyama H Protein Sci; 1998 Aug; 7(8):1802-10. PubMed ID: 10082378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]