These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9258513)

  • 1. Towards the development of a bioartificial pancreas: effects of poly-L-lysine on alginate beads with BTC3 cells.
    Benson JP; Papas KK; Constantinidis I; Sambanis A
    Cell Transplant; 1997; 6(4):395-402. PubMed ID: 9258513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped beta TC3 mouse insulinoma cells.
    Constantinidis I; Rask I; Long RC; Sambanis A
    Biomaterials; 1999 Nov; 20(21):2019-27. PubMed ID: 10535813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the development of a bioartificial pancreas: a 13C NMR study on the effects of alginate/poly-L-lysine/alginate entrapment on glucose metabolism by beta TC3 mouse insulinoma cells.
    Constantinidis I; Mukundan NE; Gamcsik MP; Sambanis A
    Cell Mol Biol (Noisy-le-grand); 1997 Jul; 43(5):721-9. PubMed ID: 9298594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a bioartificial pancreas: I. long-term propagation and basal and induced secretion from entrapped betaTC3 cell cultures.
    Papas KK; Long RC; Sambanis A; Constantinidis I
    Biotechnol Bioeng; 1999; 66(4):219-30. PubMed ID: 10578092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the development of a bioartificial pancreas: immunoisolation and NMR monitoring of mouse insulinomas.
    Sambanis A; Papas KK; Flanders PC; Long RC; Kang H; Constantinidis I
    Cytotechnology; 1994; 15(1-3):351-63. PubMed ID: 7765950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function.
    Tziampazis E; Sambanis A
    Biotechnol Prog; 1995; 11(2):115-26. PubMed ID: 7766095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen consumption rates of free and alginate-entrapped beta TC3 mouse insulinoma cells.
    Mukundan NE; Flanders PC; Constantinidis I; Papas KK; Sambanis A
    Biochem Biophys Res Commun; 1995 May; 210(1):113-8. PubMed ID: 7741729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ATP and Pi in the mechanism of insulin secretion in the mouse insulinoma betaTC3 cell line.
    Papas KK; Long RC; Constantinidis I; Sambanis A
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):807-14. PubMed ID: 9307031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties.
    Strand BL; Gåserød O; Kulseng B; Espevik T; Skjåk-Baek G
    J Microencapsul; 2002; 19(5):615-30. PubMed ID: 12433304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a bioartificial pancreas: II. Effects of oxygen on long-term entrapped betaTC3 cell cultures.
    Papas KK; Long RC; Sambanis A; Constantinidis I
    Biotechnol Bioeng; 1999; 66(4):231-7. PubMed ID: 10578093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of RIN-m5F cells within Ba2+ cross-linked alginate beads affects proliferation and insulin secretion.
    Cui YX; Shakesheff KM; Adams G
    J Microencapsul; 2006 Sep; 23(6):663-76. PubMed ID: 17118882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of growth regulation on conditionally-transformed alginate-entrapped insulin secreting cell lines in vitro.
    Simpson NE; Khokhlova N; Oca-Cossio JA; McFarlane SS; Simpson CP; Constantinidis I
    Biomaterials; 2005 Aug; 26(22):4633-41. PubMed ID: 15722133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a bioartificial pancreas(+).
    Opara EC; Mirmalek-Sani SH; Khanna O; Moya ML; Brey EM
    J Investig Med; 2010 Oct; 58(7):831-7. PubMed ID: 20683347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of short-term hypoxia on a transformed cell-based bioartificial pancreatic construct.
    Papas KK; Long RC; Constantinidis I; Sambanis A
    Cell Transplant; 2000; 9(3):415-22. PubMed ID: 10972340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas.
    Sakai S; Ono T; Ijima H; Kawakami K
    Biomaterials; 2002 Nov; 23(21):4177-83. PubMed ID: 12194520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cryopreservation on cell viability and insulin secretion in a model tissue-engineered pancreatic substitute (TEPS).
    Mukherjee N; Chen Z; Sambanis A; Song Y
    Cell Transplant; 2005; 14(7):449-56. PubMed ID: 16285253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of immunoisolated insulin-secreting beta TC6-F7 cells as a bioartificial pancreas.
    Mamujee SN; Zhou D; Wheeler MB; Vacek I; Sun AM
    Ann Transplant; 1997; 2(3):27-32. PubMed ID: 9869861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bioartificial pancreas: macroencapsulation of insulin secreting cells in hollow fibers.
    Altmah JJ
    J Diabet Complications; 1988; 2(2):68-74. PubMed ID: 2843555
    [No Abstract]   [Full Text] [Related]  

  • 19. Evaluation of bioartificial pancreas function made from sodium alginate and poly-L-lisine microcapsules settled with viable pancreatic islets.
    Gamian E; Kochman A; Rabczyński J
    Polim Med; 1999; 29(3-4):3-20. PubMed ID: 10858765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial and beta cell composite aggregates for improved function of a bioartificial pancreas encapsulation device.
    Skrzypek K; Barrera YB; Groth T; Stamatialis D
    Int J Artif Organs; 2018 Mar; 41(3):152-159. PubMed ID: 29546813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.