These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9258821)

  • 1. Early histologic and ultrastructural changes in microvessels of periosteal callus.
    Brighton CT; Hunt RM
    J Orthop Trauma; 1997 May; 11(4):244-53. PubMed ID: 9258821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early fracture callus in the diaphysis of human long bones. Histologic and ultrastructural study.
    Postacchini F; Gumina S; Perugia D; De Martino C
    Clin Orthop Relat Res; 1995 Jan; (310):218-28. PubMed ID: 7641443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cartilaginous fracture callus in rats.
    Henricson A; Hulth A; Johnell O
    Acta Orthop Scand; 1987 Jun; 58(3):244-8. PubMed ID: 3307284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of blood-vessellike structures in cartilaginous callus by antilaminin and antiheparin sulfate proteoglycan antibodies.
    Hulth A; Johnell O; Lindberg L; Paulsson M; Heinegård D
    Clin Orthop Relat Res; 1990 May; (254):289-93. PubMed ID: 2323143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells.
    Collette NM; Yee CS; Hum NR; Murugesh DK; Christiansen BA; Xie L; Economides AN; Manilay JO; Robling AG; Loots GG
    Bone; 2016 Jul; 88():20-30. PubMed ID: 27102547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early histological and ultrastructural changes in medullary fracture callus.
    Brighton CT; Hunt RM
    J Bone Joint Surg Am; 1991 Jul; 73(6):832-47. PubMed ID: 2071617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis.
    Diaz-Flores L; Gutierrez R; Lopez-Alonso A; Gonzalez R; Varela H
    Clin Orthop Relat Res; 1992 Feb; (275):280-6. PubMed ID: 1735226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular response in the periosteum following mucoperiosteal flap surgery in dogs: 3-dimensional observation of an angiogenic process.
    Nobuto T; Suwa F; Kono T; Hatakeyama Y; Honjou N; Shirai T; Mitsuyama M; Imai H
    J Periodontol; 2005 Aug; 76(8):1339-45. PubMed ID: 16101367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical localization of nerve growth factor in fractured and unfractured rat bone.
    Grills BL; Schuijers JA
    Acta Orthop Scand; 1998 Aug; 69(4):415-9. PubMed ID: 9798454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early muscle-periosteal lesion inhibits fracture healing in rats.
    Utvåg SE; Grundnes O; Reikerås O
    Acta Orthop Scand; 1999 Feb; 70(1):62-6. PubMed ID: 10191751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concepts of fracture union, delayed union, and nonunion.
    Marsh D
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S22-30. PubMed ID: 9917623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and quantification of proliferating cells during rat fracture repair: detection of proliferating cell nuclear antigen by immunohistochemistry.
    Iwaki A; Jingushi S; Oda Y; Izumi T; Shida JI; Tsuneyoshi M; Sugioka Y
    J Bone Miner Res; 1997 Jan; 12(1):96-102. PubMed ID: 9240731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.
    Mori Y; Adams D; Hagiwara Y; Yoshida R; Kamimura M; Itoi E; Rowe DW
    J Bone Miner Metab; 2016 Nov; 34(6):606-614. PubMed ID: 26369320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing.
    Claes L; Eckert-Hübner K; Augat P
    J Orthop Res; 2002 Sep; 20(5):1099-105. PubMed ID: 12382978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periosteal Mesenchymal Progenitor Dysfunction and Extraskeletally-Derived Fibrosis Contribute to Atrophic Fracture Nonunion.
    Wang L; Tower RJ; Chandra A; Yao L; Tong W; Xiong Z; Tang K; Zhang Y; Liu XS; Boerckel JD; Guo X; Ahn J; Qin L
    J Bone Miner Res; 2019 Mar; 34(3):520-532. PubMed ID: 30602062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of periosteal stripping on healing of segmental fractures in rats.
    Utvåg SE; Grundnes O; Reikeraos O
    J Orthop Trauma; 1996; 10(4):279-84. PubMed ID: 8723407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone.
    Tatsuyama K; Maezawa Y; Baba H; Imamura Y; Fukuda M
    Eur J Histochem; 2000; 44(3):269-78. PubMed ID: 11095098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of neuropeptides and vasoactive substances on microcirculation of the callus after tibial osteotomy in rabbits.
    Vendégh Z; Melly A; Tóth B; Wolf K; Farkas T; Józan J; Hamar J; Kádas I
    Acta Vet Hung; 2009 Sep; 57(3):427-39. PubMed ID: 19635715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vessel-like structures in the callus cartilage.
    Oni OO; Pringle S
    Injury; 1993 Sep; 24(8):555-6. PubMed ID: 8244552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of galanin and galanin receptor-1 in normal bone and during fracture repair in the rat.
    McDonald AC; Schuijers JA; Shen PJ; Gundlach AL; Grills BL
    Bone; 2003 Nov; 33(5):788-97. PubMed ID: 14623054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.