These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 9259512)
1. Biodegradable polymeric microparticles for drug delivery and vaccine formulation: the surface attachment of hydrophilic species using the concept of poly(ethylene glycol) anchoring segments. Coombes AG; Tasker S; Lindblad M; Holmgren J; Hoste K; Toncheva V; Schacht E; Davies MC; Illum L; Davis SS Biomaterials; 1997 Sep; 18(17):1153-61. PubMed ID: 9259512 [TBL] [Abstract][Full Text] [Related]
2. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Yeh MK J Microencapsul; 2000; 17(6):743-56. PubMed ID: 11063421 [TBL] [Abstract][Full Text] [Related]
3. PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Delgado A; Lavelle EC; Hartshorne M; Davis SS Vaccine; 1999 Jul; 17(22):2927-38. PubMed ID: 10438065 [TBL] [Abstract][Full Text] [Related]
4. The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Lavelle EC; Yeh MK; Coombes AG; Davis SS Vaccine; 1999 Feb; 17(6):512-29. PubMed ID: 10075157 [TBL] [Abstract][Full Text] [Related]
5. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres. Morita T; Horikiri Y; Suzuki T; Yoshino H Int J Pharm; 2001 May; 219(1-2):127-37. PubMed ID: 11337173 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Daly SM; Przybycien TM; Tilton RD Biotechnol Bioeng; 2005 Jun; 90(7):856-68. PubMed ID: 15841471 [TBL] [Abstract][Full Text] [Related]
7. Improving protein delivery from microparticles using blends of poly(DL lactide co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers. Yeh MK; Davis SS; Coombes AG Pharm Res; 1996 Nov; 13(11):1693-8. PubMed ID: 8956336 [TBL] [Abstract][Full Text] [Related]
8. Comparative degradation study of biodegradable microspheres of poly(DL-lactide-co-glycolide) with poly(ethyleneglycol) derivates. Garcia JT; Fariña JB; Munguía O; Llabrés M J Microencapsul; 1999; 16(1):83-94. PubMed ID: 9972505 [TBL] [Abstract][Full Text] [Related]
9. Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer. Vandorpe J; Schacht E; Dunn S; Hawley A; Stolnik S; Davis SS; Garnett MC; Davies MC; Illum L Biomaterials; 1997 Sep; 18(17):1147-52. PubMed ID: 9259511 [TBL] [Abstract][Full Text] [Related]
10. Modification of biodegradable poly(malate) and poly(lactic-co-glycolic acid) microparticles with low molecular polyethylene glycol. Yoncheva K; Lambov N; Miloshev S Drug Dev Ind Pharm; 2009 Apr; 35(4):449-54. PubMed ID: 19288298 [TBL] [Abstract][Full Text] [Related]
11. Resorbable polymeric microspheres for drug delivery--production and simultaneous surface modification using PEO-PPO surfactants. Coombes AG; Scholes PD; Davies MC; Illum L; Davis SS Biomaterials; 1994 Jul; 15(9):673-80. PubMed ID: 7948589 [TBL] [Abstract][Full Text] [Related]
12. Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. Ruan G; Feng SS; Li QT J Control Release; 2002 Dec; 84(3):151-60. PubMed ID: 12468218 [TBL] [Abstract][Full Text] [Related]
13. Inactive Vibrio cholerae whole-cell vaccine-loaded biodegradable microparticles: in vitro release and oral vaccination. Yeh M; Chiang C J Microencapsul; 2004 Feb; 21(1):91-106. PubMed ID: 14718189 [TBL] [Abstract][Full Text] [Related]
14. Development of PEG-PLA/PLGA microparticles for pulmonary drug delivery prepared by a novel emulsification technique assisted with amphiphilic block copolymers. Takami T; Murakami Y Colloids Surf B Biointerfaces; 2011 Oct; 87(2):433-8. PubMed ID: 21715147 [TBL] [Abstract][Full Text] [Related]
15. Plasma protein adsorption on biodegradable microspheres consisting of poly(D,L-lactide-co-glycolide), poly(L-lactide) or ABA triblock copolymers containing poly(oxyethylene). Influence of production method and polymer composition. Lück M; Pistel KF; Li YX; Blunk T; Müller RH; Kissel T J Control Release; 1998 Nov; 55(2-3):107-20. PubMed ID: 9795026 [TBL] [Abstract][Full Text] [Related]
16. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Ghaderi R; Artursson P; Carlfors J Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010 [TBL] [Abstract][Full Text] [Related]
17. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties. Morlock M; Kissel T; Li YX; Koll H; Winter G J Control Release; 1998 Dec; 56(1-3):105-15. PubMed ID: 9801434 [TBL] [Abstract][Full Text] [Related]
18. The immune response to a model antigen associated with PLG microparticles prepared using different surfactants. Rafati H; Lavelle EC; Coombes AG; Stolnik S; Holland J; Davis SS Vaccine; 1997 Dec; 15(17-18):1888-97. PubMed ID: 9413098 [TBL] [Abstract][Full Text] [Related]
19. Single dose, polymeric, microparticle-based vaccines: the influence of formulation conditions on the magnitude and duration of the immune response to a protein antigen. Coombes AG; Lavelle EC; Jenkins PG; Davis SS Vaccine; 1996 Oct; 14(15):1429-38. PubMed ID: 8994318 [TBL] [Abstract][Full Text] [Related]