BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 9259780)

  • 1. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model.
    Ching RP; Watson NA; Carter JW; Tencer AF
    Spine (Phila Pa 1976); 1997 Aug; 22(15):1710-5. PubMed ID: 9259780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric changes in the cervical spinal canal during impact.
    Chang DG; Tencer AF; Ching RP; Treece B; Senft D; Anderson PA
    Spine (Phila Pa 1976); 1994 Apr; 19(8):973-80. PubMed ID: 8009357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate.
    Tran NT; Watson NA; Tencer AF; Ching RP; Anderson PA
    Spine (Phila Pa 1976); 1995 Sep; 20(18):1984-8. PubMed ID: 8578372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canal geometry changes associated with axial compressive cervical spine fracture.
    Carter JW; Mirza SK; Tencer AF; Ching RP
    Spine (Phila Pa 1976); 2000 Jan; 25(1):46-54. PubMed ID: 10647160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural space integrity of the lower cervical spine: effect of normal range of motion.
    Nuckley DJ; Konodi MA; Raynak GC; Ching RP; Mirza SK
    Spine (Phila Pa 1976); 2002 Mar; 27(6):587-95. PubMed ID: 11884906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traumatic instabilities of the cervical spine caused by high-speed axial compression in a human model. An in vitro biomechanical study.
    Zhu Q; Ouyang J; Lu W; Lu H; Li Z; Guo X; Zhong S
    Spine (Phila Pa 1976); 1999 Mar; 24(5):440-4. PubMed ID: 10084180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic study of thoracolumbar burst fractures.
    Wilcox RK; Boerger TO; Allen DJ; Barton DC; Limb D; Dickson RA; Hall RM
    J Bone Joint Surg Am; 2003 Nov; 85(11):2184-9. PubMed ID: 14630851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical modelling of impact-related fracture characteristics and injury patterns of the cervical spine associated with riding accidents.
    Jauch SY; Wallstabe S; Sellenschloh K; Rundt D; Püschel K; Morlock MM; Meenen NM; Huber G
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):795-801. PubMed ID: 26160273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics of the cervical spine canal: changes with sagittal plane loads.
    Chen IH; Vasavada A; Panjabi MM
    J Spinal Disord; 1994 Apr; 7(2):93-101. PubMed ID: 8003838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the independent risk factors of neurologic deficit after thoracolumbar burst fracture.
    Tang P; Long A; Shi T; Zhang L; Zhang L
    J Orthop Surg Res; 2016 Oct; 11(1):128. PubMed ID: 27788683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational constraint influences dynamic spinal canal occlusion of the thoracic spine: an in vitro experimental study.
    Zhu Q; Lane C; Ching RP; Gordon JD; Fisher CG; Dvorak MF; Cripton PA; Oxland TR
    J Biomech; 2008; 41(1):171-9. PubMed ID: 17709110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic change of spinal cord compression on flexion-extension magnetic resonance imaging in cervical spine.
    Jha SC; Miyazaki M; Tsumura H
    Clin Neurol Neurosurg; 2018 Nov; 174():86-91. PubMed ID: 30219623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional morphology of the spinal canal after endplate, wedge, and burst fractures.
    Kifune M; Panjabi MM; Liu W; Arand M; Vasavada A; Oxland T
    J Spinal Disord; 1997 Dec; 10(6):457-66. PubMed ID: 9438809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The optimal radiologic method for assessing spinal canal compromise and cord compression in patients with cervical spinal cord injury. Part II: Results of a multicenter study.
    Fehlings MG; Rao SC; Tator CH; Skaf G; Arnold P; Benzel E; Dickman C; Cuddy B; Green B; Hitchon P; Northrup B; Sonntag V; Wagner F; Wilberger J
    Spine (Phila Pa 1976); 1999 Mar; 24(6):605-13. PubMed ID: 10101829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occlusion of the lumbar spine canal during high-rate axial compression.
    Robinson DL; Tse KM; Franklyn M; Ackland DC; Richardson MD; Lee PVS
    Spine J; 2020 Oct; 20(10):1692-1704. PubMed ID: 32442519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of canal occlusion during the thoracolumbar burst fracture process.
    Wilcox RK; Boerger TO; Hall RM; Barton DC; Limb D; Dickson RA
    J Biomech; 2002 Mar; 35(3):381-4. PubMed ID: 11858815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of posterior ligamentous complex injury and neurological injury to loss of vertebral body height, kyphosis, and canal compromise.
    Radcliff K; Su BW; Kepler CK; Rubin T; Shimer AL; Rihn JA; Harrop JA; Albert TJ; Vaccaro AR
    Spine (Phila Pa 1976); 2012 Jun; 37(13):1142-50. PubMed ID: 22146278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study.
    Kandziora F; Pflugmacher R; Scholz M; Schnake K; Lucke M; Schröder R; Mittlmeier T
    Spine (Phila Pa 1976); 2001 May; 26(9):1028-37. PubMed ID: 11337621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of lateral eccentricity on failure loads, kinematics, and canal occlusions of the cervical spine in axial loading.
    Van Toen C; Melnyk AD; Street J; Oxland TR; Cripton PA
    J Biomech; 2014 Mar; 47(5):1164-72. PubMed ID: 24411098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.