These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 926027)

  • 41. Central projections of cervical primary afferent fibers in the guinea pig: an HRP and WGA/HRP tracer study.
    Prihoda M; Hiller MS; Mayr R
    J Comp Neurol; 1991 Jun; 308(3):418-31. PubMed ID: 1865009
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ultrastructure of the spinal tract of the trigeminal nerve and the substantia gelatinosa.
    Kerr FW
    Exp Neurol; 1966 Dec; 16(4):359-76. PubMed ID: 5957200
    [No Abstract]   [Full Text] [Related]  

  • 44. Supraspinal linkage of substantia gelatinosa neurones: effects of descending impulses.
    Cervero F; Molony V; Iggo A
    Brain Res; 1979 Oct; 175(2):351-5. PubMed ID: 487162
    [No Abstract]   [Full Text] [Related]  

  • 45. Supraspinal inhibition of dorsal horn cell activity and location of descending pathways in the chicken (Gallus domesticus).
    Holoway JA; Keyser GF; Wright LE; Trouth CO
    Brain Res; 1978 Apr; 145(2):380-4. PubMed ID: 638797
    [No Abstract]   [Full Text] [Related]  

  • 46. [Neurons projecting from the cervical cord to the upper brain stem in the rat. A step to elucidate pain mechanisms (author's transl)].
    Yamada K
    Nihon Ika Daigaku Zasshi; 1982; 49(3):393-402. PubMed ID: 7107830
    [No Abstract]   [Full Text] [Related]  

  • 47. Serial reconstruction of Ramón y Cajal's large primary afferent complexes in laminae II and III of the adult monkey spinal cord: a Golgi study.
    Beal JA
    Brain Res; 1979 Apr; 166(1):161-5. PubMed ID: 105783
    [No Abstract]   [Full Text] [Related]  

  • 48. Tracing neural connections to pain pathways with relevance to primary headaches.
    Edvinsson L
    Cephalalgia; 2011 Apr; 31(6):737-47. PubMed ID: 21335366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in the synapses of the spinal trigeminal nucleus after ipsilateral rhizotomy.
    Westrum LE; Black RG
    Brain Res; 1968 Dec; 11(3):706-9. PubMed ID: 5712020
    [No Abstract]   [Full Text] [Related]  

  • 50. Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog.
    Sotelo C; Taxi J
    Brain Res; 1970 Jan; 17(1):137-41. PubMed ID: 4904928
    [No Abstract]   [Full Text] [Related]  

  • 51. [Complex synapses: common intercalated mechanisms in the brain stem (author's transl)].
    Wolff JR; Nĕmecek S
    J Neurovisc Relat; 1971; 0(0):suppl 10:124-34. PubMed ID: 5006122
    [No Abstract]   [Full Text] [Related]  

  • 52. Synapse selectivity in somatic afferent systems.
    Baker RE
    Prog Brain Res; 1978; 48():77-99. PubMed ID: 370907
    [No Abstract]   [Full Text] [Related]  

  • 53. Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique.
    Sakai K; Touret M; Salvert D; Leger L; Jouvet M
    Brain Res; 1977 Jan; 119(1):21-41. PubMed ID: 830382
    [No Abstract]   [Full Text] [Related]  

  • 54. Two pathways from brain stem to gamma ventral horn cells.
    GRANIT R; HOLMGREN B
    Acta Physiol Scand; 1955 Dec; 35(2):93-108. PubMed ID: 13301855
    [No Abstract]   [Full Text] [Related]  

  • 55. Sensory innervation of the brain - myth or reality?
    Chumasov EI
    Neurosci Behav Physiol; 2006 Jun; 36(5):549-51. PubMed ID: 16645772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Some aspects of the morphology and connections of motor neurons of the anterior horn of the spinal cord in batrachians and reptiles].
    RODRIGUEZ-PEREZ AP
    Trab Inst Cajal Invest Biol; 1960; 52():101-30. PubMed ID: 14493222
    [No Abstract]   [Full Text] [Related]  

  • 57. [Some features of the submicroscopic morphology of synapses in the frog and earthworm].
    De Robertis ED; Bennet S
    Vertex; 2003; 14(51):66-71. PubMed ID: 12690413
    [No Abstract]   [Full Text] [Related]  

  • 58. [On the segmental form changes of the gray substance in the spinal cord of the frog with special reference to the motor units of the anterior horn].
    NEMEC H
    Acta Anat (Basel); 1951; 13(1-2):101-18. PubMed ID: 14868275
    [No Abstract]   [Full Text] [Related]  

  • 59. Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. I. Light microscopy.
    Stensaas LJ; Stensaas SS
    Z Zellforsch Mikrosk Anat; 1968; 84(4):473-89. PubMed ID: 4178203
    [No Abstract]   [Full Text] [Related]  

  • 60. [THE NATURE OF THE STRUCTURE OF NEURONS AND SYNAPSES IN THE BRAIN STEM AND SPINAL CORD AND THEIR FUNCTIONAL ROLE IN CARNIVORA].
    ZHUKOVA GP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1964; 14():714-25. PubMed ID: 14298775
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.