These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9260289)

  • 1. An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases.
    Neuwald AF
    Protein Sci; 1997 Aug; 6(8):1764-7. PubMed ID: 9260289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes.
    Littlechild J; Garcia-Rodriguez E; Dalby A; Isupov M
    J Mol Recognit; 2002; 15(5):291-6. PubMed ID: 12447906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.
    Isupov MN; Dalby AR; Brindley AA; Izumi Y; Tanabe T; Murshudov GN; Littlechild JA
    J Mol Biol; 2000 Jun; 299(4):1035-49. PubMed ID: 10843856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 2.0 A crystal structure of catalase-peroxidase from Haloarcula marismortui.
    Yamada Y; Fujiwara T; Sato T; Igarashi N; Tanaka N
    Nat Struct Biol; 2002 Sep; 9(9):691-5. PubMed ID: 12172540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural investigation of the cofactor-free chloroperoxidases.
    Hofmann B; Tölzer S; Pelletier I; Altenbuchner J; van Pée KH; Hecht HJ
    J Mol Biol; 1998 Jun; 279(4):889-900. PubMed ID: 9642069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of peroxo forms of the vanadium haloperoxidase cofactor. A DFT investigation.
    Zampella G; Fantucci P; Pecoraro VL; De Gioia L
    J Am Chem Soc; 2005 Jan; 127(3):953-60. PubMed ID: 15656634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary structure and characterization of the vanadium chloroperoxidase from the fungus Curvularia inaequalis.
    Simons BH; Barnett P; Vollenbroek EG; Dekker HL; Muijsers AO; Messerschmidt A; Wever R
    Eur J Biochem; 1995 Apr; 229(2):566-74. PubMed ID: 7744081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical calcium-dependent phospholipid-binding machine: comparison with the C2A domain of synaptotagmin I.
    Fukuda M
    Biochem J; 2002 Sep; 366(Pt 2):681-7. PubMed ID: 12049610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid phosphate phosphatases form homo- and hetero-oligomers: catalytic competency, subcellular distribution and function.
    Long JS; Pyne NJ; Pyne S
    Biochem J; 2008 Apr; 411(2):371-7. PubMed ID: 18215144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalysis within the lipid bilayer-structure and mechanism of the MAPEG family of integral membrane proteins.
    Martinez Molina D; Eshaghi S; Nordlund P
    Curr Opin Struct Biol; 2008 Aug; 18(4):442-9. PubMed ID: 18550357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme.
    Alexeev D; Alexeeva M; Baxter RL; Campopiano DJ; Webster SP; Sawyer L
    J Mol Biol; 1998 Nov; 284(2):401-19. PubMed ID: 9813126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidic acid phosphatase from mammalian tissues: discovery of channel-like proteins with unexpected functions.
    Kanoh H; Kai M; Wada I
    Biochim Biophys Acta; 1997 Sep; 1348(1-2):56-62. PubMed ID: 9370316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A catalytic triad is required by the non-heme haloperoxidases to perform halogenation.
    Pelletier I; Altenbuchner J; Mattes R
    Biochim Biophys Acta; 1995 Jul; 1250(2):149-57. PubMed ID: 7632719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redesigning an integral membrane K+ channel into a soluble protein.
    Roosild TP; Choe S
    Protein Eng Des Sel; 2005 Feb; 18(2):79-84. PubMed ID: 15788421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Phosphatidic acid phosphatase (type 2), haloperoxidase family and germ cell migration].
    Wada I; Kai M; Kanoh H
    Seikagaku; 1998 Sep; 70(9):1185-8. PubMed ID: 9796415
    [No Abstract]   [Full Text] [Related]  

  • 18. Evidence for indole-3-acetic acid binding site in plant peroxidases. Structural similarity between peroxidases and auxin-binding proteins.
    Savitsky PA; Rojkova AM; Tishkov VI; Ouporov IV; Rudenskaya GN; Gazaryan IG
    Biochemistry (Mosc); 1998 Jun; 63(6):629-33. PubMed ID: 9668202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily.
    Wrabl JO; Grishin NV
    J Mol Biol; 2001 Nov; 314(3):365-74. PubMed ID: 11846551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identity of a conserved motif in phospholipid scramblase that is required for Ca2+-accelerated transbilayer movement of membrane phospholipids.
    Zhou Q; Sims PJ; Wiedmer T
    Biochemistry; 1998 Feb; 37(8):2356-60. PubMed ID: 9485382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.