These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9260503)

  • 1. The concurrent recording of electroencephalography and impedance cardiography: effects on EEG.
    Dalton KM; Davidson RJ
    Psychophysiology; 1997 Jul; 34(4):488-93. PubMed ID: 9260503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance cardiography by use of a spot-electrode array to track changes in cardiac output in anesthetized dogs.
    Kiesler TW; Voorhees WD; Wessale JL; Pham CK
    J Am Vet Med Assoc; 1990 Jun; 196(11):1804-10. PubMed ID: 2351600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalp electrode impedance, infection risk, and EEG data quality.
    Ferree TC; Luu P; Russell GS; Tucker DM
    Clin Neurophysiol; 2001 Mar; 112(3):536-44. PubMed ID: 11222977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of electrode placement upon EEG biofeedback training: the monopolar-bipolar controversy.
    Fehmi LG; Sundor A
    Int J Psychosom; 1989; 36(1-4):23-33. PubMed ID: 2599783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing spot electrode arrangements for electric impedance cardiography.
    Hoetink AE; Faes TJ; Schuur EH; Gorkink R; Goovaerts HG; Meijer JH; Heethaar RM
    Physiol Meas; 2002 May; 23(2):457-67. PubMed ID: 12051315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new EEG recording system for passive dry electrodes.
    Gargiulo G; Calvo RA; Bifulco P; Cesarelli M; Jin C; Mohamed A; van Schaik A
    Clin Neurophysiol; 2010 May; 121(5):686-93. PubMed ID: 20097606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambulatory impedance cardiography: a feasibility study.
    Sherwood A; McFetridge J; Hutcheson JS
    J Appl Physiol (1985); 1998 Dec; 85(6):2365-9. PubMed ID: 9843565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparability of Spot Versus Band Electrodes for Impedance Cardiography.
    McGrath JJ; O'Brien WH; Hassinger HJ; Shah P
    J Psychophysiol; 2005 Jul; 19(3):195-203. PubMed ID: 27867248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference.
    Yao D; Wang L; Oostenveld R; Nielsen KD; Arendt-Nielsen L; Chen AC
    Physiol Meas; 2005 Jun; 26(3):173-84. PubMed ID: 15798293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-band EEG (fbEEG): a new standard for clinical electroencephalography.
    Vanhatalo S; Voipio J; Kaila K
    Clin EEG Neurosci; 2005 Oct; 36(4):311-7. PubMed ID: 16296449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Optimal electrode array for ambulatory measuring of cardiac output based on the electrical impedance method].
    Song Y; Gao S; Ikrashi A; Yamakoshi K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):32-5, 57. PubMed ID: 21485178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The measurement of cardiac output in dogs by impedance cardiography with different electrode arrangements.
    Adamicza A; Tutsek L; Daróczy B; Bari F; Nagy S
    Acta Physiol Hung; 1994; 82(1):37-52. PubMed ID: 7976395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording.
    Greischar LL; Burghy CA; van Reekum CM; Jackson DC; Pizzagalli DA; Mueller C; Davidson RJ
    Clin Neurophysiol; 2004 Mar; 115(3):710-20. PubMed ID: 15036067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1390-401. PubMed ID: 11759920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-band EEG (FbEEG): an emerging standard in electroencephalography.
    Vanhatalo S; Voipio J; Kaila K
    Clin Neurophysiol; 2005 Jan; 116(1):1-8. PubMed ID: 15589176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain electrical field measurements unaffected by linked earlobes reference.
    Gonzalez Andino SL; Pascual Marqui RD; Valdes Sosa PA; Biscay Lirio R; Machado C; Diaz G; Figueredo Rodriguez P; Castro Torrez C
    Electroencephalogr Clin Neurophysiol; 1990 Mar; 75(3):155-60. PubMed ID: 1689639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous acquisition of functional magnetic resonance images and impedance cardiography.
    Cieslak M; Ryan WS; Macy A; Kelsey RM; Cornick JE; Verket M; Blascovich J; Grafton S
    Psychophysiology; 2015 Apr; 52(4):481-8. PubMed ID: 25410526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New ambulatory impedance cardiograph validated against the Minnesota Impedance Cardiograph.
    Nakonezny PA; Kowalewski RB; Ernst JM; Hawkley LC; Lozano DL; Litvack DA; Berntson GG; Sollers JJ; Kizakevich P; Cacioppo JT; Lovallo WR
    Psychophysiology; 2001 May; 38(3):465-73. PubMed ID: 11352134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolating gait-related movement artifacts in electroencephalography during human walking.
    Kline JE; Huang HJ; Snyder KL; Ferris DP
    J Neural Eng; 2015 Aug; 12(4):046022. PubMed ID: 26083595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.