These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9260513)

  • 1. Exploring and explaining epigenetic effects.
    Henikoff S; Matzke MA
    Trends Genet; 1997 Aug; 13(8):293-5. PubMed ID: 9260513
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of Igf2 imprinting in development and disease.
    Reik W; Bowden L; Constancia M; Dean W; Feil R; Forné T; Kelsey G; Maher E; Moore T; Sun FL; Walter J
    Int J Dev Biol; 1996; Suppl 1():53S-54S. PubMed ID: 9087693
    [No Abstract]   [Full Text] [Related]  

  • 3. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome.
    Sparago A; Cerrato F; Vernucci M; Ferrero GB; Silengo MC; Riccio A
    Nat Genet; 2004 Sep; 36(9):958-60. PubMed ID: 15314640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development.
    Weksberg R; Smith AC; Squire J; Sadowski P
    Hum Mol Genet; 2003 Apr; 12 Spec No 1():R61-8. PubMed ID: 12668598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome.
    Sun FL; Dean WL; Kelsey G; Allen ND; Reik W
    Nature; 1997 Oct; 389(6653):809-15. PubMed ID: 9349812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wiedemann-Beckwith syndrome, imprinting, IGF2, and H19: implications for hemihyperplasia, associated neoplasms, and overgrowth.
    Cohen MM
    Am J Med Genet; 1994 Aug; 52(2):233-4. PubMed ID: 7802016
    [No Abstract]   [Full Text] [Related]  

  • 7. Genomic imprinting and cancer; new paradigms in the genetics of neoplasia.
    Schofield PN; Joyce JA; Lam WK; Grandjean V; Ferguson-Smith A; Reik W; Maher ER
    Toxicol Lett; 2001 Mar; 120(1-3):151-60. PubMed ID: 11323172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wiedemann-Beckwith syndrome: genomic imprinting revisited.
    Weksberg R
    Am J Med Genet; 1994 Aug; 52(2):235-6. PubMed ID: 7802017
    [No Abstract]   [Full Text] [Related]  

  • 9. Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes.
    Sperandeo MP; Ungaro P; Vernucci M; Pedone PV; Cerrato F; Perone L; Casola S; Cubellis MV; Bruni CB; Andria G; Sebastio G; Riccio A
    Am J Hum Genet; 2000 Mar; 66(3):841-7. PubMed ID: 10712200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdeletion and IGF2 loss of imprinting in a cascade causing Beckwith-Wiedemann syndrome with Wilms' tumor.
    Prawitt D; Enklaar T; Gärtner-Rupprecht B; Spangenberg C; Lausch E; Reutzel D; Fees S; Korzon M; Brozek I; Limon J; Housman DE; Pelletier J; Zabel B
    Nat Genet; 2005 Aug; 37(8):785-6; author reply 786-7. PubMed ID: 16049499
    [No Abstract]   [Full Text] [Related]  

  • 11. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome.
    Engel JR; Smallwood A; Harper A; Higgins MJ; Oshimura M; Reik W; Schofield PN; Maher ER
    J Med Genet; 2000 Dec; 37(12):921-6. PubMed ID: 11106355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome.
    Joyce JA; Lam WK; Catchpoole DJ; Jenks P; Reik W; Maher ER; Schofield PN
    Hum Mol Genet; 1997 Sep; 6(9):1543-8. PubMed ID: 9285792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the Beckwith-Wiedemann syndrome region in vertebrates.
    Paulsen M; Khare T; Burgard C; Tierling S; Walter J
    Genome Res; 2005 Jan; 15(1):146-53. PubMed ID: 15590939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway.
    Brown KW; Villar AJ; Bickmore W; Clayton-Smith J; Catchpoole D; Maher ER; Reik W
    Hum Mol Genet; 1996 Dec; 5(12):2027-32. PubMed ID: 8968759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel de novo point mutation of the OCT-binding site in the IGF2/H19-imprinting control region in a Beckwith-Wiedemann syndrome patient.
    Higashimoto K; Jozaki K; Kosho T; Matsubara K; Fuke T; Yamada D; Yatsuki H; Maeda T; Ohtsuka Y; Nishioka K; Joh K; Koseki H; Ogata T; Soejima H
    Clin Genet; 2014 Dec; 86(6):539-44. PubMed ID: 24299031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome.
    Reik W; Maher ER
    Trends Genet; 1997 Aug; 13(8):330-4. PubMed ID: 9260520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Beckwith-Wiedemann syndrome].
    Nakane T; Fukushima Y
    Ryoikibetsu Shokogun Shirizu; 2000; (30 Pt 5):140-2. PubMed ID: 11057171
    [No Abstract]   [Full Text] [Related]  

  • 18. Genomic imprinting and chromatin insulation in Beckwith-Wiedemann syndrome.
    Greally JM
    Mol Biotechnol; 1999 Apr; 11(2):159-73. PubMed ID: 10464770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two-domain hypothesis in Beckwith-Wiedemann syndrome.
    Feinberg AP
    J Clin Invest; 2000 Sep; 106(6):739-40. PubMed ID: 10995782
    [No Abstract]   [Full Text] [Related]  

  • 20. Alterations of H19 imprinting and IGF2 replication timing are infrequent in Beckwith-Wiedemann syndrome.
    Squire JA; Li M; Perlikowski S; Fei YL; Bayani J; Zhang ZM; Weksberg R
    Genomics; 2000 May; 65(3):234-42. PubMed ID: 10857747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.