These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 9260745)
1. Establishment of human adult astrocyte cultures derived from postmortem multiple sclerosis and control brain and spinal cord regions: immunophenotypical and functional characterization. De Groot CJ; Langeveld CH; Jongenelen CA; Montagne L; Van Der Valk P; Dijkstra CD J Neurosci Res; 1997 Aug; 49(3):342-54. PubMed ID: 9260745 [TBL] [Abstract][Full Text] [Related]
2. Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. De Groot CJ; Ruuls SR; Theeuwes JW; Dijkstra CD; Van der Valk P J Neuropathol Exp Neurol; 1997 Jan; 56(1):10-20. PubMed ID: 8990125 [TBL] [Abstract][Full Text] [Related]
3. Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. Aloisi F; Borsellino G; Samoggia P; Testa U; Chelucci C; Russo G; Peschle C; Levi G J Neurosci Res; 1992 Aug; 32(4):494-506. PubMed ID: 1356158 [TBL] [Abstract][Full Text] [Related]
4. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Blauth K; Soltys J; Matschulat A; Reiter CR; Ritchie A; Baird NL; Bennett JL; Owens GP Acta Neuropathol; 2015 Dec; 130(6):765-81. PubMed ID: 26511623 [TBL] [Abstract][Full Text] [Related]
5. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. Yiangou Y; Facer P; Durrenberger P; Chessell IP; Naylor A; Bountra C; Banati RR; Anand P BMC Neurol; 2006 Mar; 6():12. PubMed ID: 16512913 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Imura T; Nakano I; Kornblum HI; Sofroniew MV Glia; 2006 Feb; 53(3):277-93. PubMed ID: 16267834 [TBL] [Abstract][Full Text] [Related]
7. Alpha-smooth muscle actin (alpha-SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: potential regulatory role of transforming growth factor-beta 1 (TGF-beta1). Moreels M; Vandenabeele F; Dumont D; Robben J; Lambrichts I Neuropathol Appl Neurobiol; 2008 Oct; 34(5):532-46. PubMed ID: 18005096 [TBL] [Abstract][Full Text] [Related]
8. Spinal cord multiple sclerosis lesions in Japanese patients: Schwann cell remyelination occurs in areas that lack glial fibrillary acidic protein (GFAP). Itoyama Y; Ohnishi A; Tateishi J; Kuroiwa Y; Webster HD Acta Neuropathol; 1985; 65(3-4):217-23. PubMed ID: 2579518 [TBL] [Abstract][Full Text] [Related]
9. Clonal analysis of astrocyte diversity in neonatal rat spinal cord cultures. Miller RH; Szigeti V Development; 1991 Sep; 113(1):353-62. PubMed ID: 1765006 [TBL] [Abstract][Full Text] [Related]
10. Expression of transforming growth factor (TGF)-beta1, -beta2, and -beta3 isoforms and TGF-beta type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures. De Groot CJ; Montagne L; Barten AD; Sminia P; Van Der Valk P J Neuropathol Exp Neurol; 1999 Feb; 58(2):174-87. PubMed ID: 10029100 [TBL] [Abstract][Full Text] [Related]
11. Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. Yoon H; Walters G; Paulsen AR; Scarisbrick IA PLoS One; 2017; 12(7):e0180697. PubMed ID: 28700615 [TBL] [Abstract][Full Text] [Related]
12. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Pekny M; Eliasson C; Chien CL; Kindblom LG; Liem R; Hamberger A; Betsholtz C Exp Cell Res; 1998 Mar; 239(2):332-43. PubMed ID: 9521851 [TBL] [Abstract][Full Text] [Related]
13. Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes. Ridet JL; Alonso G; Chauvet N; Chapron J; Koenig J; Privat A Cell Tissue Res; 1996 Jan; 283(1):39-49. PubMed ID: 8581958 [TBL] [Abstract][Full Text] [Related]
15. A novel human astrocyte cell line (A735) with astrocyte-specific neurotransmitter function. Price TN; Burke JF; Mayne LV In Vitro Cell Dev Biol Anim; 1999 May; 35(5):279-88. PubMed ID: 10475274 [TBL] [Abstract][Full Text] [Related]
16. Postmortem delay effects on neuroglial cells and brain macrophages from Lewis rats with acute experimental allergic encephalomyelitis: an immunohistochemical and cytochemical study. De Groot CJ; Theeuwes JW; Dijkstra CD; van der Valk P J Neuroimmunol; 1995 Jun; 59(1-2):123-34. PubMed ID: 7797613 [TBL] [Abstract][Full Text] [Related]
17. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Misu T; Fujihara K; Kakita A; Konno H; Nakamura M; Watanabe S; Takahashi T; Nakashima I; Takahashi H; Itoyama Y Brain; 2007 May; 130(Pt 5):1224-34. PubMed ID: 17405762 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of radial glia from radial precursor cells and transformation into astrocytes in the developing rat spinal cord. Barry D; McDermott K Glia; 2005 May; 50(3):187-97. PubMed ID: 15682427 [TBL] [Abstract][Full Text] [Related]
19. Pure astrocyte cultures derived from cells isolated from mature brain. Norton WT; Farooq M; Chiu FC; Bottenstein JE Glia; 1988; 1(6):403-14. PubMed ID: 2976400 [TBL] [Abstract][Full Text] [Related]