These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9260971)

  • 41. Unassigned or nonsense codons in Micrococcus luteus.
    Kano A; Ohama T; Abe R; Osawa S
    J Mol Biol; 1993 Mar; 230(1):51-6. PubMed ID: 8450550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacterial patterning controlled by light exposure.
    Velema WA; van der Berg JP; Szymanski W; Driessen AJ; Feringa BL
    Org Biomol Chem; 2015 Feb; 13(6):1639-42. PubMed ID: 25530471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content.
    Ohama T; Yamao F; Muto A; Osawa S
    J Bacteriol; 1987 Oct; 169(10):4770-7. PubMed ID: 3654584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. UV endonuclease of Micrococcus luteus, a cyclobutane pyrimidine dimer-DNA glycosylase/abasic lyase: cloning and characterization of the gene.
    Shiota S; Nakayama H
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):593-8. PubMed ID: 9012829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor.
    Mukamolova GV; Turapov OA; Kazarian K; Telkov M; Kaprelyants AS; Kell DB; Young M
    Mol Microbiol; 2002 Nov; 46(3):611-21. PubMed ID: 12410820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimicrobial activities of plant compounds against antibiotic-resistant Micrococcus luteus.
    Friedman M; Buick R; Elliott CT
    Int J Antimicrob Agents; 2006 Aug; 28(2):156-8. PubMed ID: 16844351
    [No Abstract]   [Full Text] [Related]  

  • 47. Molecular cloning, expression, and characterization of the genes encoding the two essential protein components of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase.
    Shimizu N; Koyama T; Ogura K
    J Bacteriol; 1998 Mar; 180(6):1578-81. PubMed ID: 9515931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PCR cloning of the resuscitation-promoting factor (Rpf) gene from Micrococcus luteus, sequencing and expression in Escherichia coli.
    Matsuda M; Togo M; Kagawa S; Moore JE
    Microbios; 2001; 104(407):55-61. PubMed ID: 11229658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile regioselective synthesis of novel bis-thiazole derivatives and their antimicrobial activity.
    Mahmoodi NO; Parvizi J; Sharifzadeh B; Rassa M
    Arch Pharm (Weinheim); 2013 Dec; 346(12):860-4. PubMed ID: 24136795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery and Biosynthesis of the Antibiotic Bicyclomycin in Distantly Related Bacterial Classes.
    Vior NM; Lacret R; Chandra G; Dorai-Raj S; Trick M; Truman AW
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of the Biosynthetic Pathway for the Antibiotic Bicyclomycin.
    Patteson JB; Cai W; Johnson RA; Santa Maria KC; Li B
    Biochemistry; 2018 Jan; 57(1):61-65. PubMed ID: 29053243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new assay to determine oritavancin concentrations.
    Vidaillac C; Aeschlimann JR; Rybak MJ
    J Antibiot (Tokyo); 2010 Dec; 63(12):717-9. PubMed ID: 20940724
    [No Abstract]   [Full Text] [Related]  

  • 53. A Repeating Sulfated Galactan Motif Resuscitates Dormant Micrococcus luteus Bacteria.
    Böttcher T; Szamosvári D; Clardy J
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29678921
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of the C(1) Triol Group in Bicyclomycin: Synthesis and Biochemical and Biological Properties.
    Park Hg HG; Zhang X; Widger WR; Kohn H
    J Org Chem; 1996 Nov; 61(22):7750-7755. PubMed ID: 11667730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Rhodobacter sphaeroides 2.4.1 rho gene: expression and genetic analysis of structure and function.
    Gomelsky M; Kaplan S
    J Bacteriol; 1996 Apr; 178(7):1946-54. PubMed ID: 8606169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli.
    Raghunathan N; Kapshikar RM; Leela JK; Mallikarjun J; Bouloc P; Gowrishankar J
    Nucleic Acids Res; 2018 Apr; 46(7):3400-3411. PubMed ID: 29474582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics.
    Malik M; Li L; Zhao X; Kerns RJ; Berger JM; Drlica K
    J Antimicrob Chemother; 2014 Dec; 69(12):3227-35. PubMed ID: 25085655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A bacterial cytokine.
    Mukamolova GV; Kaprelyants AS; Young DI; Young M; Kell DB
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8916-21. PubMed ID: 9671779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recombinant yeast and human cells as screening tools to search for antibacterial agents targeting the transcription termination factor Rho.
    Moreau K; Surand J; Le Dantec A; Mosrin-Huaman C; Legrand A; Rahmouni AR
    J Antibiot (Tokyo); 2018 Mar; 71(4):447-455. PubMed ID: 29371644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduced Rho-dependent transcription termination permits NusA-independent growth of Escherichia coli.
    Zheng C; Friedman DI
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7543-7. PubMed ID: 8052617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.