BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 9261142)

  • 1. Oxidation of low density lipoprotein particles decreases their ability to bind to human aortic proteoglycans. Dependence on oxidative modification of the lysine residues.
    Oörni K; Pentikäinen MO; Annila A; Kovanen PT
    J Biol Chem; 1997 Aug; 272(34):21303-11. PubMed ID: 9261142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolysis and fusion of low density lipoprotein particles strengthen their binding to human aortic proteoglycans.
    Paananen K; Saarinen J; Annila A; Kovanen PT
    J Biol Chem; 1995 May; 270(20):12257-62. PubMed ID: 7744877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of very-low-density, intermediate-density, and low-density lipoproteins with human arterial wall proteoglycans.
    Anber V; Millar JS; McConnell M; Shepherd J; Packard CJ
    Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):2507-14. PubMed ID: 9409221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelinase induces aggregation and fusion, but phospholipase A2 only aggregation, of low density lipoprotein (LDL) particles. Two distinct mechanisms leading to increased binding strength of LDL to human aortic proteoglycans.
    Oörni K; Hakala JK; Annila A; Ala-Korpela M; Kovanen PT
    J Biol Chem; 1998 Oct; 273(44):29127-34. PubMed ID: 9786921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decrease in pH strongly enhances binding of native, proteolyzed, lipolyzed, and oxidized low density lipoprotein particles to human aortic proteoglycans.
    Sneck M; Kovanen PT; Oörni K
    J Biol Chem; 2005 Nov; 280(45):37449-54. PubMed ID: 16147996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different apolipoprotein B breakdown patterns in models of oxidized low density lipoprotein.
    Viita H; Närvänen O; Ylä-Herttuala S
    Life Sci; 1999; 65(8):783-93. PubMed ID: 10466744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoprotein lipase (LPL) strongly links native and oxidized low density lipoprotein particles to decorin-coated collagen. Roles for both dimeric and monomeric forms of LPL.
    Pentikäinen MO; Oörni K; Kovanen PT
    J Biol Chem; 2000 Feb; 275(8):5694-701. PubMed ID: 10681554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages.
    Hazell LJ; Stocker R
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):165-72. PubMed ID: 8439285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloperoxidase and hypochlorite, but not copper ions, oxidize heparin-bound LDL particles and release them from heparin.
    Pentikäinen MO; Oörni K; Kovanen PT
    Arterioscler Thromb Vasc Biol; 2001 Dec; 21(12):1902-8. PubMed ID: 11742862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural requirements for the binding of modified proteins to the scavenger receptor of macrophages.
    Zhang H; Yang Y; Steinbrecher UP
    J Biol Chem; 1993 Mar; 268(8):5535-42. PubMed ID: 8383674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent binding of oxidized cholesteryl esters to protein: implications for oxidative modification of low density lipoprotein and atherosclerosis.
    Kawai Y; Saito A; Shibata N; Kobayashi M; Yamada S; Osawa T; Uchida K
    J Biol Chem; 2003 Jun; 278(23):21040-9. PubMed ID: 12663661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoprotein lipase enhances the binding of native and oxidized low density lipoproteins to versican and biglycan synthesized by cultured arterial smooth muscle cells.
    Olin KL; Potter-Perigo S; Barrett PH; Wight TN; Chait A
    J Biol Chem; 1999 Dec; 274(49):34629-36. PubMed ID: 10574927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of copper-catalyzed oxidation of low density lipoprotein by proteoglycans and glycosaminoglycans.
    Camejo G; Hurt-Camejo E; Rosengren B; Wiklund O; López F; Bondjers G
    J Lipid Res; 1991 Dec; 32(12):1983-91. PubMed ID: 1816326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the oxidative modification of LDL by nitecapone.
    Pentikäinen MO; Lindstedt KA; Kovanen PT
    Arterioscler Thromb Vasc Biol; 1995 Jun; 15(6):740-7. PubMed ID: 7773727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products.
    Steinbrecher UP
    J Biol Chem; 1987 Mar; 262(8):3603-8. PubMed ID: 3102491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-density lipoprotein binding affinity of arterial wall proteoglycans: characteristics of a chondroitin sulfate proteoglycan subfraction.
    Srinivasan SR; Vijayagopal P; Eberle K; Radhakrishnamurthy B; Berenson GS
    Biochim Biophys Acta; 1989 Nov; 1006(2):159-66. PubMed ID: 2512982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of arterial proteoglycans and glycosaminoglycans on low density lipoprotein oxidation and its uptake by human macrophages and arterial smooth muscle cells.
    Hurt-Camejo E; Camejo G; Rosengren B; López F; Ahlström C; Fager G; Bondjers G
    Arterioscler Thromb; 1992 May; 12(5):569-83. PubMed ID: 1576119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional properties of apolipoprotein B in chemically modified low density lipoproteins.
    Vanderyse L; Devreese AM; Baert J; Vanloo B; Lins L; Ruysschaert JM; Rosseneu M
    Atherosclerosis; 1992 Dec; 97(2-3):187-99. PubMed ID: 1466663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidized LDL bind to nonproteoglycan components of smooth muscle extracellular matrices.
    Chang MY; Potter-Perigo S; Wight TN; Chait A
    J Lipid Res; 2001 May; 42(5):824-33. PubMed ID: 11352990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ebselen and probucol on oxidative modifications of lipid and protein of low density lipoprotein induced by free radicals.
    Noguchi N; Gotoh N; Niki E
    Biochim Biophys Acta; 1994 Jul; 1213(2):176-82. PubMed ID: 8025128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.