BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9261213)

  • 1. [Molecular characterization of intestinal absorption of drugs by carrier-mediated transport mechanisms].
    Tamai I
    Yakugaku Zasshi; 1997 Jul; 117(7):415-34. PubMed ID: 9261213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1.
    Tamai I; Sai Y; Ono A; Kido Y; Yabuuchi H; Takanaga H; Satoh E; Ogihara T; Amano O; Izeki S; Tsuji A
    J Pharm Pharmacol; 1999 Oct; 51(10):1113-21. PubMed ID: 10579682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular and cell biological analyses for intestinal absorption and renal excretion of drugs].
    Saito H
    Yakugaku Zasshi; 1997 Aug; 117(8):522-41. PubMed ID: 9306727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier-mediated intestinal transport of drugs.
    Tsuji A; Tamai I
    Pharm Res; 1996 Jul; 13(7):963-77. PubMed ID: 8842032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane.
    Takanaga H; Maeda H; Yabuuchi H; Tamai I; Higashida H; Tsuji A
    J Pharm Pharmacol; 1996 Oct; 48(10):1073-7. PubMed ID: 8953511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biopharmaceutical studies on molecular mechanisms of membrane transport].
    Tsuji A
    Yakugaku Zasshi; 2002 Dec; 122(12):1037-58. PubMed ID: 12510384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Wu X; Whitfield LR; Stewart BH
    Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine.
    Tamai I; Nakanishi T; Hayashi K; Terao T; Sai Y; Shiraga T; Miyamoto K; Takeda E; Higashida H; Tsuji A
    J Pharm Pharmacol; 1997 Aug; 49(8):796-801. PubMed ID: 9379359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms.
    Tamai I; Takanaga H; Maeda H; Yabuuchi H; Sai Y; Suzuki Y; Tsuji A
    J Pharm Pharmacol; 1997 Jan; 49(1):108-12. PubMed ID: 9120761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney.
    Saito H; Okuda M; Terada T; Sasaki S; Inui K
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1631-7. PubMed ID: 8531138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.
    Tamai I; Takanaga H; Maeda H; Sai Y; Ogihara T; Higashida H; Tsuji A
    Biochem Biophys Res Commun; 1995 Sep; 214(2):482-9. PubMed ID: 7677755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear intestinal absorption of 5-hydroxytryptamine receptor antagonist caused by absorptive and secretory transporters.
    Tamai I; Saheki A; Saitoh R; Sai Y; Yamada I; Tsuji A
    J Pharmacol Exp Ther; 1997 Oct; 283(1):108-15. PubMed ID: 9336314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible role of anion exchanger AE2 as the intestinal monocarboxylic acid/anion antiporter.
    Yabuuchi H; Tamai I; Sai Y; Tsuji A
    Pharm Res; 1998 Mar; 15(3):411-6. PubMed ID: 9563070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ and in vitro evidence for stereoselective and carrier-mediated transport of monocarboxylic acids across intestinal epithelial tissue.
    Ogihara T; Tamai I; Tsuji A
    Biol Pharm Bull; 2000 Jul; 23(7):855-9. PubMed ID: 10919366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine.
    Thwaites DT; Anderson CM
    Exp Physiol; 2007 Jul; 92(4):603-19. PubMed ID: 17468205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism.
    Tsuji A; Takanaga H; Tamai I; Terasaki T
    Pharm Res; 1994 Jan; 11(1):30-7. PubMed ID: 8140053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the monocarboxylic acid transport system in the intestinal absorption of an orally active beta-lactam prodrug: carindacillin as a model.
    Li YH; Tanno M; Itoh T; Yamada H
    Int J Pharm; 1999 Nov; 191(2):151-9. PubMed ID: 10564841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier.
    Terao T; Hisanaga E; Sai Y; Tamai I; Tsuji A
    J Pharm Pharmacol; 1996 Oct; 48(10):1083-9. PubMed ID: 8953513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal absorption and activation of decitabine amino acid ester prodrugs mediated by peptide transporter PEPT1 and enterocyte enzymes.
    Tao W; Zhao D; Sun M; Wang Z; Lin B; Bao Y; Li Y; He Z; Sun Y; Sun J
    Int J Pharm; 2018 Apr; 541(1-2):64-71. PubMed ID: 29471144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.