These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9261213)

  • 1. [Molecular characterization of intestinal absorption of drugs by carrier-mediated transport mechanisms].
    Tamai I
    Yakugaku Zasshi; 1997 Jul; 117(7):415-34. PubMed ID: 9261213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1.
    Tamai I; Sai Y; Ono A; Kido Y; Yabuuchi H; Takanaga H; Satoh E; Ogihara T; Amano O; Izeki S; Tsuji A
    J Pharm Pharmacol; 1999 Oct; 51(10):1113-21. PubMed ID: 10579682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular and cell biological analyses for intestinal absorption and renal excretion of drugs].
    Saito H
    Yakugaku Zasshi; 1997 Aug; 117(8):522-41. PubMed ID: 9306727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier-mediated intestinal transport of drugs.
    Tsuji A; Tamai I
    Pharm Res; 1996 Jul; 13(7):963-77. PubMed ID: 8842032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane.
    Takanaga H; Maeda H; Yabuuchi H; Tamai I; Higashida H; Tsuji A
    J Pharm Pharmacol; 1996 Oct; 48(10):1073-7. PubMed ID: 8953511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biopharmaceutical studies on molecular mechanisms of membrane transport].
    Tsuji A
    Yakugaku Zasshi; 2002 Dec; 122(12):1037-58. PubMed ID: 12510384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Wu X; Whitfield LR; Stewart BH
    Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine.
    Tamai I; Nakanishi T; Hayashi K; Terao T; Sai Y; Shiraga T; Miyamoto K; Takeda E; Higashida H; Tsuji A
    J Pharm Pharmacol; 1997 Aug; 49(8):796-801. PubMed ID: 9379359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms.
    Tamai I; Takanaga H; Maeda H; Yabuuchi H; Sai Y; Suzuki Y; Tsuji A
    J Pharm Pharmacol; 1997 Jan; 49(1):108-12. PubMed ID: 9120761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney.
    Saito H; Okuda M; Terada T; Sasaki S; Inui K
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1631-7. PubMed ID: 8531138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.
    Tamai I; Takanaga H; Maeda H; Sai Y; Ogihara T; Higashida H; Tsuji A
    Biochem Biophys Res Commun; 1995 Sep; 214(2):482-9. PubMed ID: 7677755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear intestinal absorption of 5-hydroxytryptamine receptor antagonist caused by absorptive and secretory transporters.
    Tamai I; Saheki A; Saitoh R; Sai Y; Yamada I; Tsuji A
    J Pharmacol Exp Ther; 1997 Oct; 283(1):108-15. PubMed ID: 9336314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible role of anion exchanger AE2 as the intestinal monocarboxylic acid/anion antiporter.
    Yabuuchi H; Tamai I; Sai Y; Tsuji A
    Pharm Res; 1998 Mar; 15(3):411-6. PubMed ID: 9563070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ and in vitro evidence for stereoselective and carrier-mediated transport of monocarboxylic acids across intestinal epithelial tissue.
    Ogihara T; Tamai I; Tsuji A
    Biol Pharm Bull; 2000 Jul; 23(7):855-9. PubMed ID: 10919366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine.
    Thwaites DT; Anderson CM
    Exp Physiol; 2007 Jul; 92(4):603-19. PubMed ID: 17468205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism.
    Tsuji A; Takanaga H; Tamai I; Terasaki T
    Pharm Res; 1994 Jan; 11(1):30-7. PubMed ID: 8140053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the monocarboxylic acid transport system in the intestinal absorption of an orally active beta-lactam prodrug: carindacillin as a model.
    Li YH; Tanno M; Itoh T; Yamada H
    Int J Pharm; 1999 Nov; 191(2):151-9. PubMed ID: 10564841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier.
    Terao T; Hisanaga E; Sai Y; Tamai I; Tsuji A
    J Pharm Pharmacol; 1996 Oct; 48(10):1083-9. PubMed ID: 8953513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal absorption and activation of decitabine amino acid ester prodrugs mediated by peptide transporter PEPT1 and enterocyte enzymes.
    Tao W; Zhao D; Sun M; Wang Z; Lin B; Bao Y; Li Y; He Z; Sun Y; Sun J
    Int J Pharm; 2018 Apr; 541(1-2):64-71. PubMed ID: 29471144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.