These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARgamma-LXRalpha-ABCA1-dependent pathway associated with apoE. Hou M; Xia M; Zhu H; Wang Q; Li Y; Xiao Y; Zhao T; Tang Z; Ma J; Ling W Cell Biochem Funct; 2007; 25(1):33-44. PubMed ID: 16981222 [TBL] [Abstract][Full Text] [Related]
3. Novel technique for generating macrophage foam cells for in vitro reverse cholesterol transport studies. Sengupta B; Narasimhulu CA; Parthasarathy S J Lipid Res; 2013 Dec; 54(12):3358-72. PubMed ID: 24115226 [TBL] [Abstract][Full Text] [Related]
4. Sage weed (Salvia plebeia) extract antagonizes foam cell formation and promotes cholesterol efflux in murine macrophages. Park SH; Kim JL; Kang MK; Gong JH; Han SY; Shim JH; Lim SS; Kang YH Int J Mol Med; 2012 Nov; 30(5):1105-12. PubMed ID: 22922992 [TBL] [Abstract][Full Text] [Related]
5. Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice. Zhou W; Lin J; Chen H; Wang J; Liu Y; Xia M Br J Nutr; 2015 Aug; 114(4):509-18. PubMed ID: 26201974 [TBL] [Abstract][Full Text] [Related]
6. The very low- and intermediate-density lipoprotein fraction isolated from apolipoprotein E-knockout mice transforms macrophages to foam cells through an apolipoprotein E-independent pathway. Hakamata H; Sakaguchi H; Zhang C; Sakashita N; Suzuki H; Miyazaki A; Takeya M; Takahashi K; Kitamura N; Horiuchi S Biochemistry; 1998 Sep; 37(39):13720-7. PubMed ID: 9753460 [TBL] [Abstract][Full Text] [Related]
7. Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) A1 from human macrophage foam cells. Palmer AM; Murphy N; Graham A Atherosclerosis; 2004 Mar; 173(1):27-38. PubMed ID: 15177121 [TBL] [Abstract][Full Text] [Related]
8. UFM1 Protects Macrophages from oxLDL-Induced Foam Cell Formation Through a Liver X Receptor α Dependent Pathway. Pang Q; Xiong J; Hu XL; He JP; Liu HF; Zhang GY; Li YY; Chen FL J Atheroscler Thromb; 2015; 22(11):1124-40. PubMed ID: 26040753 [TBL] [Abstract][Full Text] [Related]
9. Apolipoprotein J (clusterin) induces cholesterol export from macrophage-foam cells: a potential anti-atherogenic function? Gelissen IC; Hochgrebe T; Wilson MR; Easterbrook-Smith SB; Jessup W; Dean RT; Brown AJ Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):231-7. PubMed ID: 9512484 [TBL] [Abstract][Full Text] [Related]
10. Impaired mobilisation of cholesterol from stored cholesteryl esters in human (THP-1) macrophages. Graham A; Angell AD; Jepson CA; Yeaman SJ; Hassall DG Atherosclerosis; 1996 Feb; 120(1-2):135-45. PubMed ID: 8645354 [TBL] [Abstract][Full Text] [Related]
11. A pathway-dependent on apoE, ApoAI, and ABCA1 determines formation of buoyant high-density lipoprotein by macrophage foam cells. Yancey PG; Yu H; Linton MF; Fazio S Arterioscler Thromb Vasc Biol; 2007 May; 27(5):1123-31. PubMed ID: 17303773 [TBL] [Abstract][Full Text] [Related]
12. Interferon-β promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Boshuizen MC; Hoeksema MA; Neele AE; van der Velden S; Hamers AA; Van den Bossche J; Lutgens E; de Winther MP Cytokine; 2016 Jan; 77():220-6. PubMed ID: 26427927 [TBL] [Abstract][Full Text] [Related]
13. Inhibition by eicosapentaenoic acid of oxidized-LDL- and lysophosphatidylcholine-induced human coronary artery smooth muscle cell production of endothelin. Kohno M; Ohmori K; Wada Y; Kondo I; Noma T; Fujita N; Mizushige K; Mandal AK J Vasc Res; 2001; 38(4):379-88. PubMed ID: 11455209 [TBL] [Abstract][Full Text] [Related]
14. Metformin ameliorates Ox-LDL-induced foam cell formation in raw264.7 cells by promoting ABCG-1 mediated cholesterol efflux. He X; Chen X; Wang L; Wang W; Liang Q; Yi L; Wang Y; Gao Q Life Sci; 2019 Jan; 216():67-74. PubMed ID: 30218721 [TBL] [Abstract][Full Text] [Related]
15. Nucleolin protects macrophages from oxLDL-induced foam cell formation through up-regulating ABCA1 expression. Li Y; Jiang B; Liang P; Tong Z; Liu M; Lv Q; Liu Y; Liu X; Tang Y; Xiao X Biochem Biophys Res Commun; 2017 Apr; 486(2):364-371. PubMed ID: 28315324 [TBL] [Abstract][Full Text] [Related]
16. Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Hong L; Xie ZZ; Du YH; Tang YB; Tao J; Lv XF; Zhou JG; Guan YY Atherosclerosis; 2011 May; 216(1):59-66. PubMed ID: 21338988 [TBL] [Abstract][Full Text] [Related]
17. [The effect of anthocyanins on cholesterol efflux from mouse peritoneal macrophage-derived foam cells and its possible molecular mechanism]. Xia M; Wang Q; Hou MJ; Zhu HL; Ma J; Tang ZH; Ling WH Zhonghua Xin Xue Guan Bing Za Zhi; 2007 Jun; 35(6):575-9. PubMed ID: 17711725 [TBL] [Abstract][Full Text] [Related]
18. Transient Receptor Potential Ankyrin 1 Channel Involved in Atherosclerosis and Macrophage-Foam Cell Formation. Zhao JF; Shyue SK; Kou YR; Lu TM; Lee TS Int J Biol Sci; 2016; 12(7):812-23. PubMed ID: 27313495 [TBL] [Abstract][Full Text] [Related]
19. Activation of peritoneal macrophages by lysophosphatidylcholine. Ngwenya BZ; Yamamoto N Biochim Biophys Acta; 1985 Mar; 839(1):9-15. PubMed ID: 3978122 [TBL] [Abstract][Full Text] [Related]
20. Corticotropin-Releasing Hormone (CRH) Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1). Cho W; Kang JL; Park YM PLoS One; 2015; 10(6):e0130587. PubMed ID: 26110874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]