These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9261684)

  • 1. The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase.
    Santerre JP; Labow RS
    J Biomed Mater Res; 1997 Aug; 36(2):223-32. PubMed ID: 9261684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes.
    Santerre JP; Labow RS; Duguay DG; Erfle D; Adams GA
    J Biomed Mater Res; 1994 Oct; 28(10):1187-99. PubMed ID: 7829548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry.
    Tang YW; Labow RS; Santerre JP
    J Biomed Mater Res; 2001 Dec; 57(4):597-611. PubMed ID: 11553891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase.
    Tang YW; Labow RS; Santerre JP
    Biomaterials; 2003 May; 24(12):2003-11. PubMed ID: 12628819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes.
    Tang YW; Labow RS; Santerre JP
    Biomaterials; 2003 Aug; 24(17):2805-19. PubMed ID: 12742719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of a poly(ester)urea-urethane by cholesterol esterase: isolation and identification of principal biodegradation products.
    Wang GB; Labow RS; Santerre JP
    J Biomed Mater Res; 1997 Sep; 36(3):407-17. PubMed ID: 9260112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surface morphology and chemistry on the enzyme catalyzed biodegradation of polycarbonate-urethanes.
    Tang YW; Labow RS; Revenko I; Santerre JP
    J Biomater Sci Polym Ed; 2002; 13(4):463-83. PubMed ID: 12160304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration.
    Tang YW; Labow RS; Santerre JP
    J Biomed Mater Res; 2001 Sep; 56(4):516-28. PubMed ID: 11400129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes.
    Santerre JP; Labow RS; Adams GA
    J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether-urethane) by cholesterol esterase.
    Jahangir R; McCloskey CB; Mc Clung WG; Labow RS; Brash JL; Santerre JP
    Biomaterials; 2003 Jan; 24(1):121-30. PubMed ID: 12417185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes.
    Lim F; Yang CZ; Cooper SL
    Biomaterials; 1994 May; 15(6):408-16. PubMed ID: 8080930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of macromolecular additives to reduce the hydrolytic degradation of polyurethanes by lysosomal enzymes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    Biomaterials; 1997 Jan; 18(1):37-45. PubMed ID: 9003895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the effect of virtual crosslinking on the hydrolytic stability of novel aliphatic polyurethane ureas for blood contact applications.
    Thomas V; Jayabalan M
    J Biomed Mater Res; 2001 Jul; 56(1):144-57. PubMed ID: 11309801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of surface-modifying macromolecules to enhance the biostability of segmented polyurethanes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    J Biomed Mater Res; 1997 Jun; 35(3):371-81. PubMed ID: 9138071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase.
    Christenson EM; Patel S; Anderson JM; Hiltner A
    Biomaterials; 2006 Jul; 27(21):3920-6. PubMed ID: 16600363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles.
    Yang M; Zhang Z; Hahn C; Laroche G; King MW; Guidoin R
    J Biomed Mater Res; 1999; 48(1):13-23. PubMed ID: 10029144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical stability of polyether urethanes versus polycarbonate urethanes.
    Tanzi MC; Mantovani D; Petrini P; Guidoin R; Laroche G
    J Biomed Mater Res; 1997 Sep; 36(4):550-9. PubMed ID: 9294772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation.
    Rafiemanzelat F; Fathollahi Zonouz A; Emtiazi G
    Amino Acids; 2013 Feb; 44(2):449-59. PubMed ID: 22833157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.