BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9261777)

  • 1. Short-term bladder-wall response to implantation of microstimulators.
    Walter JS; Riedy L; King W; Wheeler JS; Najafi K; Anderson CL; Gudausky TM; Dokmeci M
    J Spinal Cord Med; 1997 Jul; 20(3):319-23. PubMed ID: 9261777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic instrumentation with model microstimulators in an animal model of the lower urinary tract.
    Walter JS; Wheeler JS; Fitzgerald MP; McDonnell A; Wurster RD
    J Spinal Cord Med; 2005; 28(2):114-20. PubMed ID: 15889699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bladder-wall and pelvic-plexus stimulation with model microstimulators: Preliminary observations.
    Walter JS; Fitzgerald MP; Wheeler JS; Orris B; McDonnell A; Wurster RD
    J Rehabil Res Dev; 2005; 42(2):251-60. PubMed ID: 15944889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spinal cord injured animal model of lower urinary tract function: observations using direct bladder and pelvic plexus stimulation with model microstimulators.
    Walter JS; Wheeler JS; Fitzgerald MP; McDonnell A; Wurster RD
    J Spinal Cord Med; 2005; 28(3):246-54. PubMed ID: 16048143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biocompatibility, integrity, and positional stability of an injectable microstimulator for reanimation of the paralyzed larynx.
    Zealear DL; Garren KC; Rodriguez RJ; Reyes JH; Huang S; Dokmeci MR; Najafi K
    IEEE Trans Biomed Eng; 2001 Aug; 48(8):890-7. PubMed ID: 11499526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of the expiratory muscles using microstimulators.
    Lin VW; Deng X; Lee YS; Hsiao IN
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):416-20. PubMed ID: 18713679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poststroke upper-limb rehabilitation using 5 to 7 inserted microstimulators: implant procedure, safety, and efficacy for restoration of function.
    Davis R; Sparrow O; Cosendai G; Burridge JH; Wulff C; Turk R; Schulman J
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1907-12. PubMed ID: 18760401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable microstimulator for functional electrical stimulation.
    Loeb GE; Zamin CJ; Schulman JH; Troyk PR
    Med Biol Eng Comput; 1991 Nov; 29(6):NS13-9. PubMed ID: 1813741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct bladder stimulation with suture electrodes promotes voiding in a spinal animal model: a technical report.
    Walter JS; Wheeler JS; Cai W; Wurster RD
    J Rehabil Res Dev; 1997 Jan; 34(1):72-81. PubMed ID: 9021627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method to identify migration of small implantable devices.
    Fitzpatrick TL; Liinamaa TL; Brown IE; Cameron T; Richmond FJ
    J Long Term Eff Med Implants; 1996; 6(3-4):157-68. PubMed ID: 10172964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.
    Becerra-Fajardo L; Ivorra A
    PLoS One; 2015; 10(7):e0131666. PubMed ID: 26147771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a thin-film peripheral nerve cuff electrode.
    Walter JS; McLane J; Cai W; Khan T; Cogan S
    J Spinal Cord Med; 1995 Jan; 18(1):28-32. PubMed ID: 7640971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs.
    Cameron T; Loeb GE; Peck RA; Schulman JH; Strojnik P; Troyk PR
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):781-90. PubMed ID: 9282470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of different suture materials in the urinary bladder of the rabbit with special reference to wound healing, epithelization and crystallization.
    Hanke PR; Timm P; Falk G; Kramer W
    Urol Int; 1994; 52(1):26-33. PubMed ID: 8140676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless microstimulators for neural prosthetics.
    Sahin M; Pikov V
    Crit Rev Biomed Eng; 2011; 39(1):63-77. PubMed ID: 21488815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bladder augmentation with acellular dermal biomatrix in a diseased animal model.
    Akbal C; Lee SD; Packer SC; Davis MM; Rink RC; Kaefer M
    J Urol; 2006 Oct; 176(4 Pt 2):1706-11. PubMed ID: 16945628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents.
    GarcĂ­a-Moreno A; Comerma-Montells A; Tudela-Pi M; Minguillon J; Becerra-Fajardo L; Ivorra A
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041421
    [No Abstract]   [Full Text] [Related]  

  • 18. A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators.
    Ghovanloo M; Najafi K
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):97-105. PubMed ID: 15651568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrays for chronic functional microstimulation of the lumbosacral spinal cord.
    McCreery D; Pikov V; Lossinsky A; Bullara L; Agnew W
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):195-207. PubMed ID: 15218934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Feasibility of using connective tissue prosthesis for autoplastic repair of urinary bladder wall defects (an experimental study)].
    Tyumentseva NV; Yushkov BG; Medvedeva SY; Kovalenko RY; Uzbekov OK; Zhuravlev VN
    Urologiia; 2016 Dec; (6):60-64. PubMed ID: 28248045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.