BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9261870)

  • 1. Molecular mechanic study of nerve agent O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonothioate (VX) bound to the active site of Torpedo californica acetylcholinesterase.
    Albaret C; Lacoutière S; Ashman WP; Froment D; Fortier PL
    Proteins; 1997 Aug; 28(4):543-55. PubMed ID: 9261870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselectivity toward VX is determined by interactions with residues of the acyl pocket as well as of the peripheral anionic site of AChE.
    Ordentlich A; Barak D; Sod-Moriah G; Kaplan D; Mizrahi D; Segall Y; Kronman C; Karton Y; Lazar A; Marcus D; Velan B; Shafferman A
    Biochemistry; 2004 Sep; 43(35):11255-65. PubMed ID: 15366935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of AChE active site gorge in determining stereoselectivity of charged and noncharged VX enantiomers.
    Ordentlich A; Barak D; Sod-Moriah G; Kaplan D; Mizrahi D; Segall Y; Kronman C; Karton Y; Lazar A; Marcus D; Velan B; Shafferman A
    Chem Biol Interact; 2005 Dec; 157-158():191-8. PubMed ID: 16289014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking study of enantiomeric fonofos oxon bound to the active site of Torpedo californica acetylcholinesterase.
    Hirashima A; Kuwano E; Eto M
    Bioorg Med Chem; 2000 Mar; 8(3):653-6. PubMed ID: 10732982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level.
    Millard CB; Kryger G; Ordentlich A; Greenblatt HM; Harel M; Raves ML; Segall Y; Barak D; Shafferman A; Silman I; Sussman JL
    Biochemistry; 1999 Jun; 38(22):7032-9. PubMed ID: 10353814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional characterization of the interaction of the photosensitizing probe methylene blue with Torpedo californica acetylcholinesterase.
    Paz A; Roth E; Ashani Y; Xu Y; Shnyrov VL; Sussman JL; Silman I; Weiner L
    Protein Sci; 2012 Aug; 21(8):1138-52. PubMed ID: 22674800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue.
    Triquigneaux MM; Ehrenshaft M; Roth E; Silman I; Ashani Y; Mason RP; Weiner L; Deterding LJ
    Biochem J; 2012 Nov; 448(1):83-91. PubMed ID: 22888904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica.
    Kryger G; Silman I; Sussman JL
    J Physiol Paris; 1998; 92(3-4):191-4. PubMed ID: 9789806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 3D structure of the anticancer prodrug CPT-11 with Torpedo californica acetylcholinesterase rationalizes its inhibitory action on AChE and its hydrolysis by butyrylcholinesterase and carboxylesterase.
    Harel M; Hyatt JL; Brumshtein B; Morton CL; Wadkins RM; Silman I; Sussman JL; Potter PM
    Chem Biol Interact; 2005 Dec; 157-158():153-7. PubMed ID: 16289500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of Torpedo californica acetylcholinesterase by reversible inhibitors.
    Weiner L; Shnyrov VL; Konstantinovskii L; Roth E; Ashani Y; Silman I
    Biochemistry; 2009 Jan; 48(3):563-74. PubMed ID: 19115961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-molecule reactions of O,S-dimethyl methylphosphonothioate: evidence for intramolecular sulfur oxidation during VX perhydrolysis.
    McAnoy AM; Williams J; Paine MR; Rogers ML; Blanksby SJ
    J Org Chem; 2009 Dec; 74(24):9319-27. PubMed ID: 19919083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl adducts.
    Elhanany E; Ordentlich A; Dgany O; Kaplan D; Segall Y; Barak R; Velan B; Shafferman A
    Chem Res Toxicol; 2001 Jul; 14(7):912-8. PubMed ID: 11453739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking.
    Pilger C; Bartolucci C; Lamba D; Tropsha A; Fels G
    J Mol Graph Model; 2001; 19(3-4):288-96, 374-8. PubMed ID: 11449566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: possible implications for the HI-6 antidote substrate specificity.
    Artursson E; Andersson PO; Akfur C; Linusson A; Börjegren S; Ekström F
    Biochem Pharmacol; 2013 May; 85(9):1389-97. PubMed ID: 23376121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.
    Rydberg EH; Brumshtein B; Greenblatt HM; Wong DM; Shaya D; Williams LD; Carlier PR; Pang YP; Silman I; Sussman JL
    J Med Chem; 2006 Sep; 49(18):5491-500. PubMed ID: 16942022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vitro protective effects of the three novel nanomolar reversible inhibitors of human cholinesterases against irreversible inhibition by organophosphorous chemical warfare agents.
    Vitorović-Todorović MD; Worek F; Perdih A; Bauk SĐ; Vujatović TB; Cvijetić IN
    Chem Biol Interact; 2019 Aug; 309():108714. PubMed ID: 31228470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a complex of the potent and specific inhibitor BW284C51 with Torpedo californica acetylcholinesterase.
    Felder CE; Harel M; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1765-71. PubMed ID: 12351819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase.
    Haviv H; Wong DM; Greenblatt HM; Carlier PR; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2005 Aug; 127(31):11029-36. PubMed ID: 16076210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.