These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9262163)

  • 1. Anoxia-induced depolarization in CA1 hippocampal neurons: role of Na+-dependent mechanisms.
    Fung ML; Haddad GG
    Brain Res; 1997 Jul; 762(1-2):97-102. PubMed ID: 9262163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+) and K(+) concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices.
    Müller M; Somjen GG
    J Neurophysiol; 2000 Feb; 83(2):735-45. PubMed ID: 10669489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.
    Stys PK; Waxman SG; Ransom BR
    J Neurosci; 1992 Feb; 12(2):430-9. PubMed ID: 1311030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium homeostasis in rat hippocampal slices during oxygen and glucose deprivation: role of voltage-sensitive sodium channels.
    Fung ML; Croning MD; Haddad GG
    Neurosci Lett; 1999 Nov; 275(1):41-4. PubMed ID: 10554980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices.
    Müller M; Somjen GG
    J Neurophysiol; 2000 Oct; 84(4):1869-80. PubMed ID: 11024079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological inhibition of the Na(+)/Ca(2+) exchanger enhances depolarizations induced by oxygen/glucose deprivation but not responses to excitatory amino acids in rat striatal neurons.
    Calabresi P; Marfia GA; Amoroso S; Pisani A; Bernardi G
    Stroke; 1999 Aug; 30(8):1687-94. PubMed ID: 10436122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium influx pathways during and after anoxia in rat hippocampal neurons.
    Sheldon C; Diarra A; Cheng YM; Church J
    J Neurosci; 2004 Dec; 24(49):11057-69. PubMed ID: 15590922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices.
    Raley-Susman KM; Kass IS; Cottrell JE; Newman RB; Chambers G; Wang J
    J Neurophysiol; 2001 Dec; 86(6):2715-26. PubMed ID: 11731531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anoxia-induced neuronal injury: role of Na+ entry and Na+-dependent transport.
    Chidekel AS; Friedman JE; Haddad GG
    Exp Neurol; 1997 Aug; 146(2):403-13. PubMed ID: 9270051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death.
    Banasiak KJ; Burenkova O; Haddad GG
    Neuroscience; 2004; 126(1):31-44. PubMed ID: 15145071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased neuronal excitability after long-term O(2) deprivation is mediated mainly by sodium channels.
    Xia Y; Fung ML; O'Reilly JP; Haddad GG
    Brain Res Mol Brain Res; 2000 Mar; 76(2):211-9. PubMed ID: 10762696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro.
    Yamamoto S; Tanaka E; Shoji Y; Kudo Y; Inokuchi H; Higashi H
    J Neurophysiol; 1997 Aug; 78(2):903-11. PubMed ID: 9307123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia increases persistent sodium current in rat ventricular myocytes.
    Ju YK; Saint DA; Gage PW
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):337-47. PubMed ID: 8961179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of metabolic inhibition on the excitability of isolated hippocampal CA1 neurons: developmental aspects.
    Cummins TR; Donnelly DF; Haddad GG
    J Neurophysiol; 1991 Nov; 66(5):1471-82. PubMed ID: 1662712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat.
    Grob M; Drolet G; Mouginot D
    J Neurosci; 2004 Apr; 24(16):3974-84. PubMed ID: 15102913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro electrophysiology of rat subicular bursting neurons.
    Mattia D; Kawasaki H; Avoli M
    Hippocampus; 1997; 7(1):48-57. PubMed ID: 9138668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons.
    Renganathan M; Cummins TR; Waxman SG
    J Neurophysiol; 2001 Aug; 86(2):629-40. PubMed ID: 11495938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential responses of neocortical neurons to glucose and/or O2 deprivation in the human and rat.
    Jiang C; Haddad GG
    J Neurophysiol; 1992 Dec; 68(6):2165-73. PubMed ID: 1491265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a sodium channel (Na(x)) activated by strong depolarization of Xenopus oocytes.
    Vasilyev A; Indyk E; Rakowski RF
    J Membr Biol; 2002 Feb; 185(3):237-47. PubMed ID: 11891581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons.
    Magee JC; Johnston D
    J Physiol; 1995 Aug; 487(1):67-90. PubMed ID: 7473260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.