These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9262829)

  • 1. Residual stresses in the human aorta and their influences by growth and remodelling.
    Valenta J; Hrus T; Sochor M; Cihák R; Povýsil C; Steidl J
    Biomed Mater Eng; 1997; 7(3):159-69. PubMed ID: 9262829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of elastin along the thoracic aorta in the pig.
    Lillie MA; Gosline JM
    J Biomech; 2007; 40(10):2214-21. PubMed ID: 17174959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The architecture of adventitial elastin in the canine infrarenal aorta.
    Haas KS; Phillips SJ; Comerota AJ; White JV
    Anat Rec; 1991 May; 230(1):86-96. PubMed ID: 2064031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive mechanical properties and structure of the aorta: segmental analysis.
    Sokolis DP
    Acta Physiol (Oxf); 2007 Aug; 190(4):277-89. PubMed ID: 17635348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress.
    Labrosse MR; Gerson ER; Veinot JP; Beller CJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():44-55. PubMed ID: 23127625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile residual strains on the elastic lamellae along the porcine thoracic aorta.
    Lillie MA; Gosline JM
    J Vasc Res; 2006; 43(6):587-601. PubMed ID: 17033196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-vagotomy mechanical characteristics and structure of the thoracic aortic wall.
    Sokolis DP; Zarbis N; Dosios T; Papalouka V; Papadimitriou L; Boudoulas H; Karayannacos PE
    Ann Biomed Eng; 2005 Nov; 33(11):1504-16. PubMed ID: 16341919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical properties of fin whale arteries are explained by novel connective tissue designs.
    Gosline JM; Shadwick RE
    J Exp Biol; 1996 Apr; 199(Pt 4):985-97. PubMed ID: 8788091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-part passive constitutive laws for the aorta in simple elongation.
    Sokolis DP
    J Med Eng Technol; 2007; 31(6):397-409. PubMed ID: 17852649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the composition of the thoracic aortic wall in spontaneously hypertensive rats treated with losartan or spironolactone.
    Han WQ; Wu LY; Zhou HY; Zhang J; Che ZQ; Wu YJ; Liu JJ; Zhu DL; Gao PJ
    Clin Exp Pharmacol Physiol; 2009 May; 36(5-6):583-8. PubMed ID: 19673944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual stress and strain in the lamellar unit of the porcine aorta: experiment and analysis.
    Matsumoto T; Goto T; Furukawa T; Sato M
    J Biomech; 2004 Jun; 37(6):807-15. PubMed ID: 15111068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of large arteries: orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media.
    Farand P; Garon A; Plante GE
    Microvasc Res; 2007 Mar; 73(2):95-9. PubMed ID: 17174983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and structural changes in human thoracic aortas with age.
    Jadidi M; Habibnezhad M; Anttila E; Maleckis K; Desyatova A; MacTaggart J; Kamenskiy A
    Acta Biomater; 2020 Feb; 103():172-188. PubMed ID: 31877371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function.
    Skilton MR; Gosby AK; Wu BJ; Ho LM; Stocker R; Caterson ID; Celermajer DS
    Clin Sci (Lond); 2006 Oct; 111(4):281-7. PubMed ID: 16734588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression in endothelial cells and intimal smooth muscle cells in atherosclerosis-prone or atherosclerosis-resistant regions of the human aorta.
    Wara AK; Mitsumata M; Yamane T; Kusumi Y; Yoshida Y
    J Vasc Res; 2008; 45(4):303-13. PubMed ID: 18212511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteopontin expression and adventitial angiogenesis induced by local vascular endothelial growth factor 165 reduces experimental aortic calcification.
    Seipelt RG; Backer CL; Mavroudis C; Stellmach V; Cornwell M; Seipelt IM; Schoendube FA; Crawford SE
    J Thorac Cardiovasc Surg; 2005 Apr; 129(4):773-81. PubMed ID: 15821643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanical performance and histomorphological structure of the descending aorta in hyperthyroidism.
    Moulakakis KG; Sokolis DP; Perrea DN; Dosios T; Dontas I; Poulakou MV; Dimitriou CA; Sandris G; Karayannacos PE
    Angiology; 2007; 58(3):343-52. PubMed ID: 17626990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of selective digestion of elastin and collagen on mechanical properties of human aortas.
    Kobielarz M; Chwiłkowska A; Turek A; Maksymowicz K; Marciniak M
    Acta Bioeng Biomech; 2015; 17(2):55-62. PubMed ID: 26415712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.