These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 9262831)
1. A constitutive modeling of the human lumbar intervertebral disc and forward-backward bending simulation. Tadano S; Katagiri K; Umehara S; Ukai T Biomed Mater Eng; 1997; 7(3):179-91. PubMed ID: 9262831 [TBL] [Abstract][Full Text] [Related]
2. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Ryan G; Pandit A; Apatsidis D Clin Biomech (Bristol); 2008 Aug; 23(7):859-69. PubMed ID: 18423954 [TBL] [Abstract][Full Text] [Related]
3. The influence of slouching and lumbar support on iliolumbar ligaments, intervertebral discs and sacroiliac joints. Snijders CJ; Hermans PF; Niesing R; Spoor CW; Stoeckart R Clin Biomech (Bristol); 2004 May; 19(4):323-9. PubMed ID: 15109750 [TBL] [Abstract][Full Text] [Related]
4. Can intervertebral disc prolapse be predicted by disc mechanics? McNally DS; Adams MA; Goodship AE Spine (Phila Pa 1976); 1993 Sep; 18(11):1525-30. PubMed ID: 8235825 [TBL] [Abstract][Full Text] [Related]
5. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads. Yao J; Turteltaub SR; Ducheyne P Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476 [TBL] [Abstract][Full Text] [Related]
6. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations. Groth KM; Granata KP J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
8. Experimental and model determination of human intervertebral disc osmoviscoelasticity. Schroeder Y; Elliott DM; Wilson W; Baaijens FP; Huyghe JM J Orthop Res; 2008 Aug; 26(8):1141-6. PubMed ID: 18327799 [TBL] [Abstract][Full Text] [Related]
9. [Biomechanical analysis of artificial intervertebral disc in a 3-dimensional finite-element model]. Ge L; Li KH Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 Nov; 33(11):1041-6. PubMed ID: 19060373 [TBL] [Abstract][Full Text] [Related]
10. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation. Malandrino A; Planell JA; Lacroix D J Biomech; 2009 Dec; 42(16):2780-8. PubMed ID: 19796766 [TBL] [Abstract][Full Text] [Related]
11. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. Renner SM; Natarajan RN; Patwardhan AG; Havey RM; Voronov LI; Guo BY; Andersson GB; An HS J Biomech; 2007; 40(6):1326-32. PubMed ID: 16843473 [TBL] [Abstract][Full Text] [Related]
12. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Little JP; Adam CJ Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical response of a lumbar intervertebral disc to manual lifting activities: a poroelastic finite element model study. Natarajan RN; Lavender SA; An HA; Andersson GB Spine (Phila Pa 1976); 2008 Aug; 33(18):1958-65. PubMed ID: 18708928 [TBL] [Abstract][Full Text] [Related]
14. Multi-planar bending properties of lumbar intervertebral joints following cyclic bending. Chow DH; Luk KD; Holmes AD; Li XF; Tam SC Clin Biomech (Bristol); 2004 Feb; 19(2):99-106. PubMed ID: 14967571 [TBL] [Abstract][Full Text] [Related]
15. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery. Vresilovic EJ; Johannessen W; Elliott DM J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681 [TBL] [Abstract][Full Text] [Related]
16. The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics. Cannella M; Arthur A; Allen S; Keane M; Joshi A; Vresilovic E; Marcolongo M J Biomech; 2008 Jul; 41(10):2104-11. PubMed ID: 18571654 [TBL] [Abstract][Full Text] [Related]
17. Influence of different artificial disc kinematics on spine biomechanics. Zander T; Rohlmann A; Bergmann G Clin Biomech (Bristol); 2009 Feb; 24(2):135-42. PubMed ID: 19121822 [TBL] [Abstract][Full Text] [Related]
18. In vivo age- and sex-related creep of human lumbar motion segments and discs in pure centric tension. Kurutz M J Biomech; 2006; 39(7):1180-90. PubMed ID: 15925372 [TBL] [Abstract][Full Text] [Related]
19. [Finite element modeling of lumbar spine and study on its biodynamics]. Guo L; Liu X; Chen W; Mu E Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1084-8. PubMed ID: 18027702 [TBL] [Abstract][Full Text] [Related]
20. Simulation of inhomogeneous rather than homogeneous poroelastic tissue material properties within disc annulus and nucleus better predicts cervical spine response: a C3-T1 finite element model analysis under compression and moment loadings. Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB Spine (Phila Pa 1976); 2011 Feb; 36(4):E245-55. PubMed ID: 21270714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]