BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9263042)

  • 1. The development of vestibulocochlear efferents and cochlear afferents in mice.
    Bruce LL; Kingsley J; Nichols DH; Fritzsch B
    Int J Dev Neurosci; 1997 Jul; 15(4-5):671-92. PubMed ID: 9263042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons.
    Theriault FM; Roy P; Stifani S
    Proc Natl Acad Sci U S A; 2004 Jul; 101(28):10343-8. PubMed ID: 15240886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties.
    Gordy C; Straka H; Houston DW; Fritzsch B; Elliott KL
    Dev Neurobiol; 2018 Nov; 78(11):1064-1080. PubMed ID: 30027559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Long and Winding Road-Vestibular Efferent Anatomy in Mice.
    Lorincz D; Poppi LA; Holt JC; Drury HR; Lim R; Brichta AM
    Front Neural Circuits; 2021; 15():751850. PubMed ID: 35153679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory neurons make stereotyped wiring decisions before maturation of their targets.
    Koundakjian EJ; Appler JL; Goodrich LV
    J Neurosci; 2007 Dec; 27(51):14078-88. PubMed ID: 18094247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands.
    Lunsford ET; Skandalis DA; Liao JC
    J Neurophysiol; 2019 Dec; 122(6):2438-2448. PubMed ID: 31642405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unmyelinated type II afferent neurons report cochlear damage.
    Liu C; Glowatzki E; Fuchs PA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14723-7. PubMed ID: 26553995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution and Development of the Inner Ear Efferent System: Transforming a Motor Neuron Population to Connect to the Most Unusual Motor Protein via Ancient Nicotinic Receptors.
    Fritzsch B; Elliott KL
    Front Cell Neurosci; 2017; 11():114. PubMed ID: 28484373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncoding variants alter GATA2 expression in rhombomere 4 motor neurons and cause dominant hereditary congenital facial paresis.
    Tenney AP; Di Gioia SA; Webb BD; Chan WM; de Boer E; Garnai SJ; Barry BJ; Ray T; Kosicki M; Robson CD; Zhang Z; Collins TE; Gelber A; Pratt BM; Fujiwara Y; Varshney A; Lek M; Warburton PE; Van Ryzin C; Lehky TJ; Zalewski C; King KA; Brewer CC; Thurm A; Snow J; Facio FM; Narisu N; Bonnycastle LL; Swift A; Chines PS; Bell JL; Mohan S; Whitman MC; Staffieri SE; Elder JE; Demer JL; Torres A; Rachid E; Al-Haddad C; Boustany RM; Mackey DA; Brady AF; Fenollar-Cortés M; Fradin M; Kleefstra T; Padberg GW; Raskin S; Sato MT; Orkin SH; Parker SCJ; Hadlock TA; Vissers LELM; van Bokhoven H; Jabs EW; Collins FS; Pennacchio LA; Manoli I; Engle EC
    Nat Genet; 2023 Jul; 55(7):1149-1163. PubMed ID: 37386251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gpr125 Marks Distinct Cochlear Cell Types and Is Dispensable for Cochlear Development and Hearing.
    Sun H; Wang T; Atkinson PJ; Billings SE; Dong W; Cheng AG
    Front Cell Dev Biol; 2021; 9():690955. PubMed ID: 34395423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage-evoked signals in cochlear neurons and supporting cells.
    Wood MB; Nowak N; Fuchs PA
    Front Neurol; 2024; 15():1361747. PubMed ID: 38419694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First data on the organization of the nervous system in juveniles of Novocrania anomala (Brachiopoda, Craniiformea).
    Temereva EN
    Sci Rep; 2020 Jun; 10(1):9295. PubMed ID: 32518307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset.
    Rose KP; Manilla G; Milon B; Zalzman O; Song Y; Coate TM; Hertzano R
    iScience; 2023 Oct; 26(10):107769. PubMed ID: 37720106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental patterns of extracellular matrix molecules in the embryonic and postnatal mouse hindbrain.
    Wéber I; Dakos A; Mészár Z; Matesz C; Birinyi A
    Front Neuroanat; 2024; 18():1369103. PubMed ID: 38496826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin remodeling protein CHD4 regulates axon guidance of spiral ganglion neurons in developing cochlea.
    Kim J; Martinez E; Qiu J; Zhouli Ni J; Kwan KY
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal outer hair cell efferent innervation in Hoxb1-dependent sensorineural hearing loss.
    Di Bonito M; Bourien J; Tizzano M; Harrus AG; Puel JL; Avallone B; Nouvian R; Studer M
    PLoS Genet; 2023 Sep; 19(9):e1010933. PubMed ID: 37738262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The continued importance of comparative auditory research to modern scientific discovery.
    Capshaw G; Brown AD; Peña JL; Carr CE; Christensen-Dalsgaard J; Tollin DJ; Womack MC; McCullagh EA
    Hear Res; 2023 Jun; 433():108766. PubMed ID: 37084504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system.
    Frank MM; Sitko AA; Suthakar K; Torres Cadenas L; Hunt M; Yuk MC; Weisz CJC; Goodrich LV
    Elife; 2023 Mar; 12():. PubMed ID: 36876911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal development in the cochlea of a nonhuman primate model, the common marmoset.
    Hosoya M; Fujioka M; Murayama AY; Ozawa H; Okano H; Ogawa K
    Dev Neurobiol; 2021 Nov; 81(8):905-938. PubMed ID: 34545999
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.