These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9263431)

  • 1. Classification of protein families and detection of the determinant residues with an improved self-organizing map.
    Andrade MA; Casari G; Sander C; Valencia A
    Biol Cybern; 1997 Jun; 76(6):441-50. PubMed ID: 9263431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA; Solski PA; Jillian SA; PĂ©rez de la Ossa P; D'Eustachio P; Der CJ; Rush MG
    Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UPSEC: an algorithm for classifying unaligned protein sequences into functional families.
    Ma PC; Chan KC
    J Comput Biol; 2008 May; 15(4):431-43. PubMed ID: 18435571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fold-specific substitution matrices for protein classification.
    Vilim RB; Cunningham RM; Lu B; Kheradpour P; Stevens FJ
    Bioinformatics; 2004 Apr; 20(6):847-53. PubMed ID: 14764567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment-free classification of G-protein-coupled receptors using self-organizing maps.
    Otaki JM; Mori A; Itoh Y; Nakayama T; Yamamoto H
    J Chem Inf Model; 2006; 46(3):1479-90. PubMed ID: 16711767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic generation and evaluation of sparse protein signatures for families of protein structural domains.
    Blades MJ; Ison JC; Ranasinghe R; Findlay JB
    Protein Sci; 2005 Jan; 14(1):13-23. PubMed ID: 15608116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.
    Abdul-Manan N; Aghazadeh B; Liu GA; Majumdar A; Ouerfelli O; Siminovitch KA; Rosen MK
    Nature; 1999 May; 399(6734):379-83. PubMed ID: 10360578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organizing tree-growing network for the classification of protein sequences.
    Wang HC; Dopazo J; de la Fraga LG; Zhu YP; Carazo JM
    Protein Sci; 1998 Dec; 7(12):2613-22. PubMed ID: 9865956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of rabE, a developmentally regulated Dictyostelium homolog of mammalian rab GTPases.
    Norian L; Dragoi IA; O'Halloran T
    DNA Cell Biol; 1999 Jan; 18(1):59-64. PubMed ID: 10025509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CASTOR: clustering algorithm for sequence taxonomical organization and relationships.
    Liu AH; Califano A
    J Comput Biol; 2003; 10(1):21-45. PubMed ID: 12676049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of adenosine triphosphate binding sites using parallel cascade system identification.
    Green JR; Korenberg MJ; David R; Hunter IW
    Ann Biomed Eng; 2003 Apr; 31(4):462-70. PubMed ID: 12723687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Organizing Hidden Markov Model Map (SOHMMM).
    Ferles C; Stafylopatis A
    Neural Netw; 2013 Dec; 48():133-47. PubMed ID: 24001407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP.
    Brecht M; Sewald K; Schiene K; Keen G; Fricke M; Sauer M; Niehaus K
    J Biotechnol; 2004 Aug; 112(1-2):151-64. PubMed ID: 15288950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.
    Kupas K; Ultsch A; Klebe G
    Proteins; 2008 May; 71(3):1288-306. PubMed ID: 18041748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins.
    Prakash B; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2000 Feb; 403(6769):567-71. PubMed ID: 10676968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.
    Chou KC
    Bioinformatics; 2005 Jan; 21(1):10-9. PubMed ID: 15308540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: implications for GTP hydrolysis.
    Mishra R; Gara SK; Mishra S; Prakash B
    Proteins; 2005 May; 59(2):332-8. PubMed ID: 15726588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mismatch string kernels for discriminative protein classification.
    Leslie CS; Eskin E; Cohen A; Weston J; Noble WS
    Bioinformatics; 2004 Mar; 20(4):467-76. PubMed ID: 14990442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic classification of protein structures using physicochemical parameters.
    Mohan A; Rao MD; Sunderrajan S; Pennathur G
    Interdiscip Sci; 2014 Sep; 6(3):176-86. PubMed ID: 25205495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.