BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9263594)

  • 1. Retrosplenial/presubicular continuum in primates: a developmental approach in fetal macaques using neurotensin and parvalbumin as markers.
    Berger B; Alvarez C; Pelaprat D
    Brain Res Dev Brain Res; 1997 Jul; 101(1-2):207-24. PubMed ID: 9263594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurochemical development of the hippocampal region in the fetal rhesus monkey, III: calbindin-D28K, calretinin and parvalbumin with special mention of cajal-retzius cells and the retrosplenial cortex.
    Berger B; Alvarez C
    J Comp Neurol; 1996 Mar; 366(4):674-99. PubMed ID: 8833116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurochemical development of the hippocampal region in the fetal rhesus monkey. II. Immunocytochemistry of peptides, calcium-binding proteins, DARPP-32, and monoamine innervation in the entorhinal cortex by the end of gestation.
    Berger B; Alvarez C
    Hippocampus; 1994 Feb; 4(1):85-114. PubMed ID: 7914799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurochemical development of the hippocampal region in the fetal rhesus monkey. I. Early appearance of peptides, calcium-binding proteins, DARPP-32, and monoamine innervation in the entorhinal cortex during the first half of gestation (E47 to E90).
    Berger B; Alvarez C; Goldman-Rakic PS
    Hippocampus; 1993 Jul; 3(3):279-305. PubMed ID: 8353610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further indication that distinct dopaminergic subsets project to the rat cerebral cortex: lack of colocalization with neurotensin in the superficial dopaminergic fields of the anterior cingulate, motor, retrosplenial and visual cortices.
    Febvret A; Berger B; Gaspar P; Verney C
    Brain Res; 1991 Apr; 547(1):37-52. PubMed ID: 1907216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The postsubicular cortex in the rat: characterization of the fourth region of the subicular cortex and its connections.
    van Groen T; Wyss JM
    Brain Res; 1990 Oct; 529(1-2):165-77. PubMed ID: 1704281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey.
    Aggleton JP; Wright NF; Vann SD; Saunders RC
    Hippocampus; 2012 Sep; 22(9):1883-900. PubMed ID: 22522494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macaque monkey retrosplenial cortex: III. Cortical efferents.
    Kobayashi Y; Amaral DG
    J Comp Neurol; 2007 Jun; 502(5):810-33. PubMed ID: 17436282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review.
    Wyss JM; Van Groen T
    Hippocampus; 1992 Jan; 2(1):1-11. PubMed ID: 1308170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The entorhinal cortex of the monkey: II. Cortical afferents.
    Insausti R; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(3):356-95. PubMed ID: 2445796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precocious development of parvalbumin-like immunoreactive interneurons in the hippocampal formation and entorhinal cortex of the fetal cynomolgus monkey.
    Berger B; De Grissac N; Alvarez C
    J Comp Neurol; 1999 Jan; 403(3):309-31. PubMed ID: 9886033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macaque monkey retrosplenial cortex: II. Cortical afferents.
    Kobayashi Y; Amaral DG
    J Comp Neurol; 2003 Nov; 466(1):48-79. PubMed ID: 14515240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic connections with limbic cortex. I. Thalamocortical projections.
    Robertson RT; Kaitz SS
    J Comp Neurol; 1981 Jan; 195(3):501-25. PubMed ID: 7204659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotensin-containing projections from the retrosplenial cortex to the anterior ventral thalamic nucleus in the rat.
    Fukami K; Kiyama H; Shiotani Y; Tohyama M
    Neuroscience; 1988 Sep; 26(3):819-26. PubMed ID: 3200430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat.
    Swanson LW; Cowan WM
    J Comp Neurol; 1977 Mar; 172(1):49-84. PubMed ID: 65364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey.
    Seltzer B; Pandya DN
    J Comp Neurol; 1991 Oct; 312(4):625-40. PubMed ID: 1761745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different ontogenetic profiles of cells expressing prepro-neurotensin/neuromedin N mRNA in the rat posterior cingulate cortex and the hippocampal formation.
    Sato M; Lee Y; Zhang JH; Shiosaka S; Noguchi K; Morita Y; Tohyama M
    Brain Res Dev Brain Res; 1990 Jul; 54(2):249-55. PubMed ID: 2397590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotensin innervation of the human cerebral cortex: lack of colocalization with catecholamines.
    Gaspar P; Berger B; Febvret A
    Brain Res; 1990 Oct; 530(2):181-95. PubMed ID: 2265353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thalamic connections with limbic cortex. II. Corticothalamic projections.
    Kaitz SS; Robertson RT
    J Comp Neurol; 1981 Jan; 195(3):527-45. PubMed ID: 7204660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.