These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9263635)

  • 1. The road less travelled: taming phosphatases.
    Widlanski TS; Myers JK; Stec B; Holtz KM; Kantrowitz ER
    Chem Biol; 1997 Jul; 4(7):489-92. PubMed ID: 9263635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development.
    Wong D; Chao JD; Av-Gay Y
    Trends Microbiol; 2013 Feb; 21(2):100-9. PubMed ID: 23084287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of non-hydrolyzable homoisoprenoid α-monofluorophosphonate inhibitors of PPAPDC family integral membrane lipid phosphatases.
    Subramanian T; Ren H; Subramanian KL; Sunkara M; Onono FO; Morris AJ; Spielmann HP
    Bioorg Med Chem Lett; 2014 Sep; 24(18):4414-4417. PubMed ID: 25150376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunities and challenges for the development of covalent chemical immunomodulators.
    Backus KM; Cao J; Maddox SM
    Bioorg Med Chem; 2019 Aug; 27(15):3421-3439. PubMed ID: 31204229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. myo-Inositol monophosphatase: a challenging target for mood stabilising drugs.
    Miller DJ; Allemann RK
    Mini Rev Med Chem; 2007 Feb; 7(2):107-13. PubMed ID: 17305585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatases as small-molecule targets: inhibiting the endogenous inhibitors of kinases.
    Schmid AC; Woscholski R
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):348-9. PubMed ID: 15046606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rising of phosphatases as targets of cancer treatment.
    Heneberg P
    Anticancer Agents Med Chem; 2011 Jan; 11(1):1-3. PubMed ID: 21395544
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphatases: Their Roles in Cancer and Their Chemical Modulators.
    Fontanillo M; Köhn M
    Adv Exp Med Biol; 2016; 917():209-40. PubMed ID: 27236558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid phosphatases as drug discovery targets for type 2 diabetes.
    Lazar DF; Saltiel AR
    Nat Rev Drug Discov; 2006 Apr; 5(4):333-42. PubMed ID: 16582877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Screening with Docking Simulations and Biochemical Evaluation of VHY Phosphatase Inhibitors.
    Park H; Lee HS; Kim SJ
    Chem Pharm Bull (Tokyo); 2015; 63(10):807-11. PubMed ID: 26423037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of 6-substituted cyclohexane-1,2,4-triol derivatives: mechanistic probes for the inositol monophosphatase reaction.
    Schulz J; Wilkie J; Beaton MW; Miller DJ; Gani D
    Biochem Soc Trans; 1998 Aug; 26(3):315-22. PubMed ID: 9765871
    [No Abstract]   [Full Text] [Related]  

  • 12. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB.
    Soellner MB; Rawls KA; Grundner C; Alber T; Ellman JA
    J Am Chem Soc; 2007 Aug; 129(31):9613-5. PubMed ID: 17636914
    [No Abstract]   [Full Text] [Related]  

  • 13. Therapeutic challenges of kinase and phosphatase inhibition and use in anti-diabetic strategy.
    Bridges AJ
    Biochem Soc Trans; 2005 Apr; 33(Pt 2):343-5. PubMed ID: 15787602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design and synthesis of 4-substituted 2-pyridin-2-ylamides with inhibitory effects on SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2).
    Ichihara Y; Fujimura R; Tsuneki H; Wada T; Okamoto K; Gouda H; Hirono S; Sugimoto K; Matsuya Y; Sasaoka T; Toyooka N
    Eur J Med Chem; 2013 Apr; 62():649-60. PubMed ID: 23434638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoserine/threonine phosphatases and their role in the control of adrenocortical steroidogenesis.
    Sayed SB; Whitehouse BJ; Jones PM
    Endocr Res; 1996 Nov; 22(4):541-3. PubMed ID: 8969908
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibitors of protein kinases and phosphatases.
    MacKintosh C; MacKintosh RW
    Trends Biochem Sci; 1994 Nov; 19(11):444-8. PubMed ID: 7855884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Localization of phosphatase responsible for hydrolysis of inositol-1,4,5-triphosphate in the olfactory lining of sturgeons].
    Piatkina GA
    Zh Evol Biokhim Fiziol; 2002; 38(1):83-90. PubMed ID: 11966210
    [No Abstract]   [Full Text] [Related]  

  • 18. Inositol monophosphatase--a putative target for Li+ in the treatment of bipolar disorder.
    Atack JR; Broughton HB; Pollack SJ
    Trends Neurosci; 1995 Aug; 18(8):343-9. PubMed ID: 7482796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease.
    Reiterer V; Eyers PA; Farhan H
    Trends Cell Biol; 2014 Sep; 24(9):489-505. PubMed ID: 24818526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modelling unveils the essential role of cellular phosphatases in the inhibition of RAF-MEK-ERK signalling by sorafenib in hepatocellular carcinoma cells.
    Saidak Z; Giacobbi AS; Louandre C; Sauzay C; Mammeri Y; Galmiche A
    Cancer Lett; 2017 Apr; 392():1-8. PubMed ID: 28161506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.