BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9263637)

  • 1. Designed protein pores as components for biosensors.
    Braha O; Walker B; Cheley S; Kasianowicz JJ; Song L; Gouaux JE; Bayley H
    Chem Biol; 1997 Jul; 4(7):497-505. PubMed ID: 9263637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch.
    Walker B; Braha O; Cheley S; Bayley H
    Chem Biol; 1995 Feb; 2(2):99-105. PubMed ID: 9383410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically engineered metal ion binding sites on the outside of a Channel's transmembrane beta-barrel.
    Kasianowicz JJ; Burden DL; Han LC; Cheley S; Bayley H
    Biophys J; 1999 Feb; 76(2):837-45. PubMed ID: 9929485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pore-forming protein with a metal-actuated switch.
    Walker B; Kasianowicz J; Krishnasastry M; Bayley H
    Protein Eng; 1994 May; 7(5):655-62. PubMed ID: 8073035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter.
    Gu LQ; Braha O; Conlan S; Cheley S; Bayley H
    Nature; 1999 Apr; 398(6729):686-90. PubMed ID: 10227291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore.
    Cheley S; Gu LQ; Bayley H
    Chem Biol; 2002 Jul; 9(7):829-38. PubMed ID: 12144927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore.
    Movileanu L; Howorka S; Braha O; Bayley H
    Nat Biotechnol; 2000 Oct; 18(10):1091-5. PubMed ID: 11017049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit dimers of alpha-hemolysin expand the engineering toolbox for protein nanopores.
    Hammerstein AF; Jayasinghe L; Bayley H
    J Biol Chem; 2011 Apr; 286(16):14324-34. PubMed ID: 21324910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triggers and switches in a self-assembling pore-forming protein.
    Bayley H
    J Cell Biochem; 1994 Oct; 56(2):177-82. PubMed ID: 7829577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus.
    Menestrina G; Dalla Serra M; Comai M; Coraiola M; Viero G; Werner S; Colin DA; Monteil H; Prévost G
    FEBS Lett; 2003 Sep; 552(1):54-60. PubMed ID: 12972152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues.
    Jung Y; Cheley S; Braha O; Bayley H
    Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters.
    Gu LQ; Dalla Serra M; Vincent JB; Vigh G; Cheley S; Braha O; Bayley H
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3959-64. PubMed ID: 10760267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore formation by S. aureus alpha-toxin in liposomes and planar lipid bilayers: effects of nonelectrolytes.
    Bashford CL; Alder GM; Fulford LG; Korchev YE; Kovacs E; MacKinnon A; Pederzolli C; Pasternak CA
    J Membr Biol; 1996 Mar; 150(1):37-45. PubMed ID: 8699478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Rodrigues CG; Bhakdi S; Valeva A
    Mol Microbiol; 2000 Sep; 37(6):1372-8. PubMed ID: 10998169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes.
    Comai M; Dalla Serra M; Coraiola M; Werner S; Colin DA; Monteil H; Prévost G; Menestrina G
    Mol Microbiol; 2002 Jun; 44(5):1251-67. PubMed ID: 12068809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore.
    Gu LQ; Cheley S; Bayley H
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15498-503. PubMed ID: 14676320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorinated amphiphiles control the insertion of α-hemolysin pores into lipid bilayers.
    Raychaudhuri P; Li Q; Mason A; Mikhailova E; Heron AJ; Bayley H
    Biochemistry; 2011 Mar; 50(10):1599-606. PubMed ID: 21275394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-forming proteins and their application in biotechnology.
    Panchal RG; Smart ML; Bowser DN; Williams DA; Petrou S
    Curr Pharm Biotechnol; 2002 Jun; 3(2):99-115. PubMed ID: 12022262
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.