These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9263850)

  • 21. Possible ligand-receptor interactions for NK1 antagonists as observed in their crystal structures.
    Boks GJ; Tollenaere JP; Kroon J
    Bioorg Med Chem; 1997 Mar; 5(3):535-47. PubMed ID: 9113332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design.
    Engh RA; Brandstetter H; Sucher G; Eichinger A; Baumann U; Bode W; Huber R; Poll T; Rudolph R; von der Saal W
    Structure; 1996 Nov; 4(11):1353-62. PubMed ID: 8939759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships.
    Bode W; Turk D; Karshikov A
    Protein Sci; 1992 Apr; 1(4):426-71. PubMed ID: 1304349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands.
    Klebe G
    J Mol Biol; 1994 Mar; 237(2):212-35. PubMed ID: 8126735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy.
    Duan LL; Feng GQ; Zhang QG
    Sci Rep; 2016 Aug; 6():31488. PubMed ID: 27507430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The orientation of N-H...O=C and N-H...N hydrogen bonds in biological systems: how good is a point charge as a model for a hydrogen bonding atom?
    Apaya RP; Bondí M; Price SL
    J Comput Aided Mol Des; 1997 Sep; 11(5):479-90. PubMed ID: 9385551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting the hydrophobic effect on the molecular level: the role of water, enthalpy, and entropy in ligand binding to thermolysin.
    Biela A; Nasief NN; Betz M; Heine A; Hangauer D; Klebe G
    Angew Chem Int Ed Engl; 2013 Feb; 52(6):1822-8. PubMed ID: 23283700
    [No Abstract]   [Full Text] [Related]  

  • 28. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D.
    Richmond NJ; Abrams CA; Wolohan PR; Abrahamian E; Willett P; Clark RD
    J Comput Aided Mol Des; 2006 Sep; 20(9):567-87. PubMed ID: 17051338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site.
    Pujadas G; Palau J
    Protein Sci; 2001 Aug; 10(8):1645-57. PubMed ID: 11468361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational automatic search method for stable docking models of protein and ligand.
    Mizutani MY; Tomioka N; Itai A
    J Mol Biol; 1994 Oct; 243(2):310-26. PubMed ID: 7932757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The particle concept: placing discrete water molecules during protein-ligand docking predictions.
    Rarey M; Kramer B; Lengauer T
    Proteins; 1999 Jan; 34(1):17-28. PubMed ID: 10336380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The significance of the 20-carbonyl group of progesterone in steroid receptor binding: a molecular dynamics and structure-based ligand design study.
    Hillisch A; von Langen J; Menzenbach B; Droescher P; Kaufmann G; Schneider B; Elger W
    Steroids; 2003 Nov; 68(10-13):869-78. PubMed ID: 14667979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thiorphan and retro-thiorphan display equivalent interactions when bound to crystalline thermolysin.
    Roderick SL; Fournie-Zaluski MC; Roques BP; Matthews BW
    Biochemistry; 1989 Feb; 28(4):1493-7. PubMed ID: 2719912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand binding cooperativity: Bioisosteric replacement of CO with SO2 among thrombin inhibitors.
    Said AM; Hangauer DG
    Bioorg Med Chem Lett; 2016 Aug; 26(16):3850-4. PubMed ID: 27445170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A shape- and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors.
    DesJarlais RL; Dixon JS
    J Comput Aided Mol Des; 1994 Jun; 8(3):231-42. PubMed ID: 7964924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic superposition of drug molecules based on their common receptor site.
    Kato Y; Inoue A; Yamada M; Tomioka N; Itai A
    J Comput Aided Mol Des; 1992 Oct; 6(5):475-86. PubMed ID: 1474395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new method for estimating the importance of hydrogen-bonding groups in the binding site of a protein.
    Kelly MD; Mancera RL
    J Comput Aided Mol Des; 2003 Jul; 17(7):401-14. PubMed ID: 14677637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible matching of test ligands to a 3D pharmacophore using a molecular superposition force field: comparison of predicted and experimental conformations of inhibitors of three enzymes.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1995 Jun; 9(3):237-50. PubMed ID: 7561976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1.7 A X-ray structure of the periplasmic ribose receptor from Escherichia coli.
    Mowbray SL; Cole LB
    J Mol Biol; 1992 May; 225(1):155-75. PubMed ID: 1583688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.