These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9263852)

  • 1. Molecular modelling studies of substrate binding to the lipase from Rhizomucor miehei.
    Yagnik AT; Littlechild JA; Turner NJ
    J Comput Aided Mol Des; 1997 May; 11(3):256-64. PubMed ID: 9263852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution.
    Derewenda ZS; Derewenda U; Dodson GG
    J Mol Biol; 1992 Oct; 227(3):818-39. PubMed ID: 1404390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical studies of Rhizomucor miehei lipase activation.
    Norin M; Olsen O; Svendsen A; Edholm O; Hult K
    Protein Eng; 1993 Nov; 6(8):855-63. PubMed ID: 8309933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1997 Feb; 1337(2):302-10. PubMed ID: 9048908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase.
    Peters GH; Olsen OH; Svendsen A; Wade RC
    Biophys J; 1996 Jul; 71(1):119-29. PubMed ID: 8804595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length.
    Peters GH; van Aalten DM; Svendsen A; Bywater R
    Protein Eng; 1997 Feb; 10(2):149-58. PubMed ID: 9089814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase.
    Derewenda U; Brzozowski AM; Lawson DM; Derewenda ZS
    Biochemistry; 1992 Feb; 31(5):1532-41. PubMed ID: 1737010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions.
    Haeffner F; Norin T; Hult K
    Biophys J; 1998 Mar; 74(3):1251-62. PubMed ID: 9512023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase.
    Holmquist M; Norin M; Hult K
    Lipids; 1993 Aug; 28(8):721-6. PubMed ID: 8377587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity.
    Holmquist M; Martinelle M; Berglund P; Clausen IG; Patkar S; Svendsen A; Hult K
    J Protein Chem; 1993 Dec; 12(6):749-57. PubMed ID: 8136025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselectivity of recombinant Rhizomucor miehei lipase in the ring opening of oxazolin-5(4H)-ones.
    Turner NA; Gaskin DJ; Yagnik AT; Littlechild JA; Vulfson EN
    Protein Eng; 2001 Apr; 14(4):269-78. PubMed ID: 11391019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the substrate binding pocket in the presence of an inhibitor covalently attached to a fungal lipase.
    Peters GH; Jensen MO; Bywater RP
    J Biomol Struct Dyn; 2001 Aug; 19(1):1-14. PubMed ID: 11565841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhizomucor miehei lipase remains highly active at water activity below 0.0001.
    Valivety RH; Halling PJ; Macrae AR
    FEBS Lett; 1992 Apr; 301(3):258-60. PubMed ID: 1577162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple conformation space search protocols for the evaluation of enantioselectivity of lipases.
    Orrenius C; van Heusden C; van Ruiten J; Overbeeke PL; Kierkels H; Duine JA; Jongejan JA
    Protein Eng; 1998 Dec; 11(12):1147-53. PubMed ID: 9930664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site.
    Bordes F; Cambon E; Dossat-Létisse V; André I; Croux C; Nicaud JM; Marty A
    Chembiochem; 2009 Jul; 10(10):1705-13. PubMed ID: 19504508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational change in the activation of lipase: an analysis in terms of low-frequency normal modes.
    Jääskeläinen S; Verma CS; Hubbard RE; Linko P; Caves LS
    Protein Sci; 1998 Jun; 7(6):1359-67. PubMed ID: 9655340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current progress in crystallographic studies of new lipases from filamentous fungi.
    Derewenda U; Swenson L; Green R; Wei Y; Yamaguchi S; Joerger R; Haas MJ; Derewenda ZS
    Protein Eng; 1994 Apr; 7(4):551-7. PubMed ID: 8029211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards pentan-2-ol.
    Léonard V; Fransson L; Lamare S; Hult K; Graber M
    Chembiochem; 2007 Apr; 8(6):662-7. PubMed ID: 17328021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.