These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9263876)

  • 1. High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves.
    Smith DB; Sacks MS; Pattany PM; Schroeder R
    J Heart Valve Dis; 1997 Jul; 6(4):424-32. PubMed ID: 9263876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage.
    Smith DB; Sacks MS; Pattany PM; Schroeder R
    J Heart Valve Dis; 1999 Jan; 8(1):25-33. PubMed ID: 10096478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biaxial strain distributions in explanted porcine bioprosthetic valves.
    Adamczyk MM; Vesely I
    J Heart Valve Dis; 2002 Sep; 11(5):688-95. PubMed ID: 12358406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves.
    Sacks MS; Schoen FJ
    J Biomed Mater Res; 2002 Dec; 62(3):359-71. PubMed ID: 12209921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture.
    Wells SM; Sellaro T; Sacks MS
    Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of accelerated testing on porcine bioprosthetic heart valve fiber architecture.
    Sacks MS; Smith DB
    Biomaterials; 1998 Jun; 19(11-12):1027-36. PubMed ID: 9692801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism.
    Levy RJ; Vyavahare N; Ogle M; Ashworth P; Bianco R; Schoen FJ
    J Heart Valve Dis; 2003 Mar; 12(2):209-16; discussion 216. PubMed ID: 12701794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure.
    Vesely I; Barber JE; Ratliff NB
    J Heart Valve Dis; 2001 Jul; 10(4):471-7. PubMed ID: 11499593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosaminoglycan-degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):217-25. PubMed ID: 12701795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do heart valve bioprostheses degenerate for metabolic or mechanical reasons?
    Gabbay S; Kadam P; Factor S; Cheung TK
    J Thorac Cardiovasc Surg; 1988 Feb; 95(2):208-15. PubMed ID: 2963176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanical effects of fatigue on the porcine bioprosthetic heart valve.
    Sacks MS
    J Long Term Eff Med Implants; 2001; 11(3-4):231-47. PubMed ID: 11921666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mechanical fatigue on the bending properties of the porcine bioprosthetic heart valve.
    Gloeckner DC; Billiar KL; Sacks MS
    ASAIO J; 1999; 45(1):59-63. PubMed ID: 9952009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biaxial strain properties of elastase-digested porcine aortic valves.
    Adamczyk MM; Lee TC; Vesely I
    J Heart Valve Dis; 2000 May; 9(3):445-53. PubMed ID: 10888104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flat or curved pericardial aortic valve cusps: a finite element study.
    Lim KH; Candra J; Yeo JH; Duran CM
    J Heart Valve Dis; 2004 Sep; 13(5):792-7. PubMed ID: 15473482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphologic findings in explanted Hancock II porcine bioprostheses.
    Butany J; Yu W; Silver MD; David TE
    J Heart Valve Dis; 1999 Jan; 8(1):4-15. PubMed ID: 10096476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-destructive evaluation techniques for prosthetic heart valves based on hologram interferometry. Part II: Experimental results and clinical implications.
    Geiger AW; Zarubin AM; Fahrenkamp A; Konertz W; von Bally G; Scheld HH
    J Heart Valve Dis; 1993 Jul; 2(4):448-53. PubMed ID: 8269148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function.
    Talman EA; Boughner DR
    J Heart Valve Dis; 1996 Mar; 5(2):152-9. PubMed ID: 8665007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.