These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9264027)

  • 1. Temperature sensitivity of a class I tRNA synthetase induced by artificial breakage of polypeptide chain.
    Kim SJ; Kim S
    Mol Cells; 1997 Jun; 7(3):389-93. PubMed ID: 9264027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition state stabilization by a phylogenetically conserved tyrosine residue in methionyl-tRNA synthetase.
    Ghosh G; Brunie S; Schulman LH
    J Biol Chem; 1991 Sep; 266(26):17136-41. PubMed ID: 1654323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site.
    Casina VC; Lobashevsky AA; McKinney WE; Brown CL; Alexander RW
    Biochemistry; 2011 Feb; 50(5):763-9. PubMed ID: 21175197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and phylogenetic analyses of methionyl-tRNA synthetase isolated from a pathogenic microorganism, Mycobacterium tuberculosis.
    Kim S; Jo YJ; Lee SH; Motegi H; Shiba K; Sassanfar M; Martinis SA
    FEBS Lett; 1998 May; 427(2):259-62. PubMed ID: 9607323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Kim HY; Demaret JP; Brunie S; Schulman LH
    Biochemistry; 1991 Dec; 30(51):11767-74. PubMed ID: 1751493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for distinct locations for metal binding sites in two closely related class I tRNA synthetases.
    Schimmel P; Landro JA; Schmidt E
    J Biomol Struct Dyn; 1993 Dec; 11(3):571-81. PubMed ID: 8129874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionyl-tRNA synthetase from Bacillus stearothermophilus: structural and functional identities with the Escherichia coli enzyme.
    Mechulam Y; Schmitt E; Panvert M; Schmitter JM; Lapadat-Tapolsky M; Meinnel T; Dessen P; Blanquet S; Fayat G
    Nucleic Acids Res; 1991 Jul; 19(13):3673-81. PubMed ID: 1852609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA.
    Kim HY; Pelka H; Brunie S; Schulman LH
    Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methionyl-tRNA synthetase.
    Deniziak MA; Barciszewski J
    Acta Biochim Pol; 2001; 48(2):337-50. PubMed ID: 11732605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General structure/function properties of microbial methionyl-tRNA synthetases.
    Schmitt E; Panvert M; Mechulam Y; Blanquet S
    Eur J Biochem; 1997 Jun; 246(2):539-47. PubMed ID: 9208948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold.
    Landro JA; Schimmel P
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function independence of microhelix aminoacylation from anticodon binding in a class I tRNA synthetase.
    Kim S; Schimmel P
    J Biol Chem; 1992 Aug; 267(22):15563-7. PubMed ID: 1639796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential amino acid residues supporting anticodon recognition in yeast methionyl-tRNA synthetase.
    Despons L; Walter P; Senger B; Ebel JP; Fasiolo F
    FEBS Lett; 1991 Sep; 289(2):217-20. PubMed ID: 1915850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in MARS identified in a specific type of pulmonary alveolar proteinosis alter methionyl-tRNA synthetase activity.
    Comisso M; Hadchouel A; de Blic J; Mirande M
    FEBS J; 2018 Jul; 285(14):2654-2661. PubMed ID: 29775242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an amino acid region supporting specific methionyl-tRNA synthetase: tRNA recognition.
    Mellot P; Mechulam Y; Le Corre D; Blanquet S; Fayat G
    J Mol Biol; 1989 Aug; 208(3):429-43. PubMed ID: 2477552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal proteins enhance stress-induced cell death.
    Kim SJ; Kim S
    Biochem Biophys Res Commun; 1998 Feb; 243(1):153-7. PubMed ID: 9473497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Meinnel T; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Jun; 231(4):1068-77. PubMed ID: 8515465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of residues involved in the binding of methionine by Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Mechulam Y; Brunie S; Blanquet S; Fayat G
    FEBS Lett; 1991 Nov; 292(1-2):259-63. PubMed ID: 1959615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A site in the dinucleotide-fold domain contributes to the accuracy of tRNA selection by Escherichia coli methionyl-tRNA synthetase.
    Kim HY; Pak M; Jakubowski H
    Mol Cells; 1998 Oct; 8(5):623-8. PubMed ID: 9856352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.