These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9264032)

  • 1. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site.
    Park Y; Choi H; Lee DS; Kim Y
    Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis of the positively charged conserved residues in the 5' exonuclease domain of Taq DNA polymerase.
    Kim Y; Kim JS; Park Y; Chang CS; Suh SW; Lee DS
    Mol Cells; 1997 Aug; 7(4):468-72. PubMed ID: 9339888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of the 5'-3' exonuclease of Thermus aquaticus DNA polymerase.
    Merkens LS; Bryan SK; Moses RE
    Biochim Biophys Acta; 1995 Nov; 1264(2):243-8. PubMed ID: 7495870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3'-5' exonuclease and strand-displacement activities.
    Soengas MS; Esteban JA; Lázaro JM; Bernad A; Blasco MA; Salas M; Blanco L
    EMBO J; 1992 Nov; 11(11):4227-37. PubMed ID: 1396603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amino acid sequence required for 5' --> 3' exonuclease activity of Bacillus caldotenax DNA polymerase.
    Ishino Y; Takahashi-Fujii A; Uemori T; Imamura M; Kato I; Doi H
    Protein Eng; 1995 Nov; 8(11):1171-5. PubMed ID: 8819983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function analysis of 3'-->5'-exonuclease of DNA polymerases.
    Derbyshire V; Pinsonneault JK; Joyce CM
    Methods Enzymol; 1995; 262():363-85. PubMed ID: 8594362
    [No Abstract]   [Full Text] [Related]  

  • 9. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases.
    de Vega M; Lazaro JM; Salas M; Blanco L
    EMBO J; 1996 Mar; 15(5):1182-92. PubMed ID: 8605889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.
    Derbyshire V; Grindley ND; Joyce CM
    EMBO J; 1991 Jan; 10(1):17-24. PubMed ID: 1989882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity.
    Lawyer FC; Stoffel S; Saiki RK; Chang SY; Landre PA; Abramson RD; Gelfand DH
    PCR Methods Appl; 1993 May; 2(4):275-87. PubMed ID: 8324500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general structure for DNA-dependent DNA polymerases.
    Blanco L; Bernad A; Blasco MA; Salas M
    Gene; 1991 Apr; 100():27-38. PubMed ID: 2055476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal binding to DNA polymerase I, its large fragment, and two 3',5'-exonuclease mutants of the large fragment.
    Mullen GP; Serpersu EH; Ferrin LJ; Loeb LA; Mildvan AS
    J Biol Chem; 1990 Aug; 265(24):14327-34. PubMed ID: 2201684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Family A and family B DNA polymerases are structurally related: evolutionary implications.
    Zhu W; Ito J
    Nucleic Acids Res; 1994 Dec; 22(24):5177-83. PubMed ID: 7816603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies.
    Reha-Krantz LJ; Stocki S; Nonay RL; Dimayuga E; Goodrich LD; Konigsberg WH; Spicer EK
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2417-21. PubMed ID: 2006180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of the 5'-3' exonuclease D190-->a mutant of DNA polymerase I from Streptococcus pneumoniae.
    Amblar M; López P
    Eur J Biochem; 1998 Feb; 252(1):124-32. PubMed ID: 9523721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Escherichia coli exonuclease I suggests how processivity is achieved.
    Breyer WA; Matthews BW
    Nat Struct Biol; 2000 Dec; 7(12):1125-8. PubMed ID: 11101894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid sequence motifs essential to 3'-->5' exonuclease activity of Escherichia coli DNA polymerase II.
    Ishino Y; Iwasaki H; Kato I; Shinagawa H
    J Biol Chem; 1994 May; 269(20):14655-60. PubMed ID: 8182073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary structure of the DNA polymerase I gene of an alpha-proteobacterium, Rhizobium leguminosarum, and comparison with other family A DNA polymerases.
    Huang YP; Downie JA; Ito J
    Curr Microbiol; 1999 Jun; 38(6):355-9. PubMed ID: 10341077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.