These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 9264247)
1. Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis. Wilt FH Bioessays; 1997 Aug; 19(8):665-8. PubMed ID: 9264247 [TBL] [Abstract][Full Text] [Related]
2. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587 [TBL] [Abstract][Full Text] [Related]
3. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Duloquin L; Lhomond G; Gache C Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391 [TBL] [Abstract][Full Text] [Related]
4. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo. Hardin J; Armstrong N Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456 [TBL] [Abstract][Full Text] [Related]
5. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos. Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661 [TBL] [Abstract][Full Text] [Related]
6. HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo. Kurokawa D; Kitajima T; Mitsunaga-Nakatsubo K; Amemiya S; Shimada H; Akasaka K Zygote; 2000; 8 Suppl 1():S33-4. PubMed ID: 11191299 [No Abstract] [Full Text] [Related]
7. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae. Gustafson T; Wolpert L Exp Cell Res; 1999 Dec; 253(2):288-95. PubMed ID: 10585249 [TBL] [Abstract][Full Text] [Related]
8. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus. Illies MR; Peeler MT; Dechtiaruk AM; Ettensohn CA Dev Genes Evol; 2002 Oct; 212(9):419-31. PubMed ID: 12373587 [TBL] [Abstract][Full Text] [Related]
9. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Gross JM; McClay DR Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024 [TBL] [Abstract][Full Text] [Related]
10. Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Guss KA; Ettensohn CA Development; 1997 May; 124(10):1899-908. PubMed ID: 9169837 [TBL] [Abstract][Full Text] [Related]
11. Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos. Armstrong N; McClay DR Dev Biol; 1994 Apr; 162(2):329-38. PubMed ID: 8150198 [TBL] [Abstract][Full Text] [Related]
12. Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis. Zito F; Tesoro V; McClay DR; Nakano E; Matranga V Dev Biol; 1998 Apr; 196(2):184-92. PubMed ID: 9576831 [TBL] [Abstract][Full Text] [Related]
13. Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis. Tomlinson CR; Klein WH Mol Reprod Dev; 1990 Apr; 25(4):328-38. PubMed ID: 2328125 [TBL] [Abstract][Full Text] [Related]
14. Pattern formation during gastrulation in the sea urchin embryo. McClay DR; Armstrong NA; Hardin J Dev Suppl; 1992; ():33-41. PubMed ID: 1299366 [TBL] [Abstract][Full Text] [Related]
15. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo. Ingersoll EP; Wilt FH Dev Biol; 1998 Apr; 196(1):95-106. PubMed ID: 9527883 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Miller JR; McClay DR Dev Biol; 1997 Dec; 192(2):323-39. PubMed ID: 9441671 [TBL] [Abstract][Full Text] [Related]
17. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Peled-Kamar M; Hamilton P; Wilt FH Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865 [TBL] [Abstract][Full Text] [Related]
18. The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads. Ettensohn CA; McClay DR Dev Biol; 1986 Oct; 117(2):380-91. PubMed ID: 3758478 [TBL] [Abstract][Full Text] [Related]
19. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. Duboc V; Lepage T J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294 [TBL] [Abstract][Full Text] [Related]
20. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Sun Z; Ettensohn CA Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]