These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 9264700)
1. [Hibernating peptides, neokyotorphin and kyotorphin, have positive effect on cardio-pulmonary and cerebral resuscitation in rats after a 12-min heart arrest]. Kharchenko IB; Ziganshin RKh; Volkov AV; Koshelev VB Biull Eksp Biol Med; 1997 May; 123(5):517-20. PubMed ID: 9264700 [No Abstract] [Full Text] [Related]
2. [Temperature and cardiotropic effects of kyotorphin and neokyotorphin in hibernating and nonhibernating animals]. Ignat'ev DA; Sukhova GS; Liashkov AE Usp Fiziol Nauk; 2009; 40(3):68-88. PubMed ID: 19764629 [TBL] [Abstract][Full Text] [Related]
3. [Development of postresuscitation morphological changes of hippocampal and cerebellar neurons: common regularities and specific features]. Avrushchenko MSh; Samorukova IV; Moroz VV; Volkov AV; Nazarenko IV; Gorenkova NA Patol Fiziol Eksp Ter; 2003; (2):27-30. PubMed ID: 12838772 [TBL] [Abstract][Full Text] [Related]
4. [Effect of fractions of peptides (1-10 kDa) from tissues of hibernating squirrels and peptides kyotorphin and neokyotorphin on fish behavior]. Santalova IM; Moshkov DA; Chaĭlakhian LM Dokl Akad Nauk; 1998 Oct; 362(5):696-8. PubMed ID: 9859008 [No Abstract] [Full Text] [Related]
5. [Functional-morphologic evaluation of the effect of the regulatory peptide kyotorphin on the status of the CNS in the post-resuscitation period]. Nazarenko IV; Zvrushchenko MSh; Volkov AV; Kamenskiĭ AA; Zaganshin RKh Patol Fiziol Eksp Ter; 1999; (2):31-3. PubMed ID: 10379182 [TBL] [Abstract][Full Text] [Related]
6. Cerebral cortical microvascular flow during and following cardiopulmonary resuscitation after short duration of cardiac arrest. Ristagno G; Tang W; Sun S; Weil MH Resuscitation; 2008 May; 77(2):229-34. PubMed ID: 18280632 [TBL] [Abstract][Full Text] [Related]
7. Cardio-cerebral and metabolic effects of methylene blue in hypertonic sodium lactate during experimental cardiopulmonary resuscitation. Miclescu A; Basu S; Wiklund L Resuscitation; 2007 Oct; 75(1):88-97. PubMed ID: 17482336 [TBL] [Abstract][Full Text] [Related]
8. [The potentials for therapy of the postresuscitation process using regulatory peptides after 10 and 15 minutes of heart arrest]. Volkov AV; Murav'ev OV; Misharina GV Anesteziol Reanimatol; 1996; (5):67-70. PubMed ID: 9027262 [TBL] [Abstract][Full Text] [Related]
9. Positive end-expiratory pressure improves survival in a rodent model of cardiopulmonary resuscitation using high-dose epinephrine. McCaul C; Kornecki A; Engelberts D; McNamara P; Kavanagh BP Anesth Analg; 2009 Oct; 109(4):1202-8. PubMed ID: 19762750 [TBL] [Abstract][Full Text] [Related]
10. The problem with and benefit of ventilations: should our approach be the same in cardiac and respiratory arrest? Aufderheide TP Curr Opin Crit Care; 2006 Jun; 12(3):207-12. PubMed ID: 16672778 [TBL] [Abstract][Full Text] [Related]
11. [Effect of hyperbaric oxygenation on the restoration of central nervous system function after long-term circulatory arrest]. Shikunova LG; Mutuskina EA; Vysotskii MV; Demurov EA Anesteziol Reanimatol; 1987; (3):31-4. PubMed ID: 3631630 [No Abstract] [Full Text] [Related]
12. Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. Böttiger BW; Schmitz B; Wiessner C; Vogel P; Hossmann KA J Cereb Blood Flow Metab; 1998 Oct; 18(10):1077-87. PubMed ID: 9778184 [TBL] [Abstract][Full Text] [Related]
13. Adenosine treatment delays postischemic hippocampal CA1 loss after cardiac arrest and resuscitation in rats. Xu K; Puchowicz MA; Lust WD; LaManna JC Brain Res; 2006 Feb; 1071(1):208-17. PubMed ID: 16412392 [TBL] [Abstract][Full Text] [Related]
14. [The asphyxia-cardiac arrest rat model for developing mechanism of effect oriented therapeutic concepts after cardiopulmonary resuscitation]. Ebmeyer U; Keilhoff G; Wolf G Anaesthesiol Reanim; 2001; 26(6):159-65. PubMed ID: 11799851 [TBL] [Abstract][Full Text] [Related]
15. Near-infrared spectroscopy: a tool to monitor cerebral hemodynamic and metabolic changes after cardiac arrest in rats. Xiao F; Rodriguez J; Arnold TC; Zhang S; Ferrara D; Ewing J; Alexander JS; Carden DL; Conrad SA Resuscitation; 2004 Nov; 63(2):213-20. PubMed ID: 15531074 [TBL] [Abstract][Full Text] [Related]
16. Time course of caspase activation in selectively vulnerable brain areas following global cerebral ischemia due to cardiac arrest in rats. Teschendorf P; Padosch SA; Spöhr F; Albertsmeier M; Schneider A; Vogel P; Choi YH; Böttiger BW; Popp E Neurosci Lett; 2008 Dec; 448(2):194-9. PubMed ID: 18938215 [TBL] [Abstract][Full Text] [Related]
17. Intracerebroventricular application of granulocyte colony-stimulating factor after cardiac arrest does not promote beneficial effects on cerebral recovery after cardiac arrest in rats. Popp E; Rabsahl T; Schneider A; Russ N; Spöhr F; Vogel P; Böttiger BW; Teschendorf P Resuscitation; 2009 Apr; 80(4):478-83. PubMed ID: 19231060 [TBL] [Abstract][Full Text] [Related]
18. Erythropoietin improved initial resuscitation and increased survival after cardiac arrest in rats. Incagnoli P; Ramond A; Joyeux-Faure M; Pépin JL; Lévy P; Ribuot C Resuscitation; 2009 Jun; 80(6):696-700. PubMed ID: 19406554 [TBL] [Abstract][Full Text] [Related]
19. Exsanguination cardiac arrest in rats treated by 60 min, but not 75 min, emergency preservation and delayed resuscitation is associated with intact outcome. Drabek T; Stezoski J; Garman RH; Han F; Henchir J; Tisherman SA; Stezoski SW; Kochanek PM Resuscitation; 2007 Oct; 75(1):114-23. PubMed ID: 17481798 [TBL] [Abstract][Full Text] [Related]
20. [Importance of pupillary and photomotor reflexes in cardiac resuscitation]. Condemi A; Donatiello G; Mauro M; Spazzolini A; Zocchi C Minerva Anestesiol; 1981 Dec; 47(12):885-90. PubMed ID: 7335192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]