These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 9265632)
1. Noncoded amino acid replacement probes of the aspartate aminotransferase mechanism. Park Y; Luo J; Schultz PG; Kirsch JF Biochemistry; 1997 Aug; 36(34):10517-25. PubMed ID: 9265632 [TBL] [Abstract][Full Text] [Related]
2. The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis. Goldberg JM; Kirsch JF Biochemistry; 1996 Apr; 35(16):5280-91. PubMed ID: 8611515 [TBL] [Abstract][Full Text] [Related]
3. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Goldberg JM; Swanson RV; Goodman HS; Kirsch JF Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027 [TBL] [Abstract][Full Text] [Related]
4. The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli. Almo SC; Smith DL; Danishefsky AT; Ringe D Protein Eng; 1994 Mar; 7(3):405-12. PubMed ID: 7909946 [TBL] [Abstract][Full Text] [Related]
5. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step. Islam MM; Goto M; Miyahara I; Ikushiro H; Hirotsu K; Hayashi H Biochemistry; 2005 Jun; 44(23):8218-29. PubMed ID: 15938611 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Sun S; Toney MD Biochemistry; 1999 Mar; 38(13):4058-65. PubMed ID: 10194319 [TBL] [Abstract][Full Text] [Related]
7. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Hayashi H; Mizuguchi H; Kagamiyama H Biochemistry; 1998 Oct; 37(43):15076-85. PubMed ID: 9790670 [TBL] [Abstract][Full Text] [Related]
8. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Cronin CN; Kirsch JF Biochemistry; 1988 Jun; 27(12):4572-9. PubMed ID: 3167000 [TBL] [Abstract][Full Text] [Related]
9. Effects of the E177K mutation in D-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity. van Ophem PW; Peisach D; Erickson SD; Soda K; Ringe D; Manning JM Biochemistry; 1999 Jan; 38(4):1323-31. PubMed ID: 9930994 [TBL] [Abstract][Full Text] [Related]
10. Kinetic and spectroscopic investigations of wild-type and mutant forms of apple 1-aminocyclopropane-1-carboxylate synthase. Li Y; Feng L; Kirsch JF Biochemistry; 1997 Dec; 36(49):15477-88. PubMed ID: 9398277 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant. Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525 [TBL] [Abstract][Full Text] [Related]
12. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris. Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866 [TBL] [Abstract][Full Text] [Related]
13. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
14. Divalent ion effects and insights into the catalytic mechanism of protein tyrosine kinase Csk. Grace MR; Walsh CT; Cole PA Biochemistry; 1997 Feb; 36(7):1874-81. PubMed ID: 9048573 [TBL] [Abstract][Full Text] [Related]
16. Purification of Synechocystis sp. strain PCC6308 cyanophycin synthetase and its characterization with respect to substrate and primer specificity. Aboulmagd E; Oppermann-Sanio FB; Steinbüchel A Appl Environ Microbiol; 2001 May; 67(5):2176-82. PubMed ID: 11319097 [TBL] [Abstract][Full Text] [Related]
17. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase. Rothman SC; Voorhies M; Kirsch JF Protein Sci; 2004 Mar; 13(3):763-72. PubMed ID: 14767072 [TBL] [Abstract][Full Text] [Related]
18. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
19. Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the alpha-aminoacrylate intermediate. Tai CH; Yoon MY; Kim SK; Rege VD; Nalabolu SR; Kredich NM; Schnackerz KD; Cook PF Biochemistry; 1998 Jul; 37(30):10597-604. PubMed ID: 9692949 [TBL] [Abstract][Full Text] [Related]
20. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids. Hayashi H; Kuramitsu S; Inoue Y; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1989 Feb; 159(1):337-42. PubMed ID: 2564274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]