These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 9265731)
1. Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors. Schuck P Curr Opin Biotechnol; 1997 Aug; 8(4):498-502. PubMed ID: 9265731 [TBL] [Abstract][Full Text] [Related]
2. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Schuck P Annu Rev Biophys Biomol Struct; 1997; 26():541-66. PubMed ID: 9241429 [TBL] [Abstract][Full Text] [Related]
3. Analysing structure-function relationships with biosensors. Van Regenmortel MH Cell Mol Life Sci; 2001 May; 58(5-6):794-800. PubMed ID: 11437238 [TBL] [Abstract][Full Text] [Related]
4. Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature. O'Shannessy DJ Curr Opin Biotechnol; 1994 Feb; 5(1):65-71. PubMed ID: 7764646 [TBL] [Abstract][Full Text] [Related]
5. The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Schuck P; Zhao H Methods Mol Biol; 2010; 627():15-54. PubMed ID: 20217612 [TBL] [Abstract][Full Text] [Related]
6. Measuring protein interactions by optical biosensors. Schuck P; Boyd LF; Andersen PS Curr Protoc Protein Sci; 2001 May; Chapter 20():Unit20.2. PubMed ID: 18429157 [TBL] [Abstract][Full Text] [Related]
7. Determination of rate and equilibrium binding constants for macromolecular interactions by surface plasmon resonance. O'Shannessy DJ; Brigham-Burke M; Soneson KK; Hensley P; Brooks I Methods Enzymol; 1994; 240():323-49. PubMed ID: 7823837 [No Abstract] [Full Text] [Related]
8. Use of optical biosensors for the study of mechanistically concerted surface adsorption processes. Hall D Anal Biochem; 2001 Jan; 288(2):109-25. PubMed ID: 11152582 [TBL] [Abstract][Full Text] [Related]
9. Combined affinity and rate constant distributions of ligand populations from experimental surface binding kinetics and equilibria. Svitel J; Balbo A; Mariuzza RA; Gonzales NR; Schuck P Biophys J; 2003 Jun; 84(6):4062-77. PubMed ID: 12770910 [TBL] [Abstract][Full Text] [Related]
10. Effects of solute multivalence on the evaluation of binding constants by biosensor technology: studies with concanavalin A and interleukin-6 as partitioning proteins. Kalinin NL; Ward LD; Winzor DJ Anal Biochem; 1995 Jul; 228(2):238-44. PubMed ID: 8572301 [TBL] [Abstract][Full Text] [Related]
11. Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology. O'Shannessy DJ; Winzor DJ Anal Biochem; 1996 May; 236(2):275-83. PubMed ID: 8660505 [TBL] [Abstract][Full Text] [Related]
12. Measuring Protein Interactions by Optical Biosensors. Zhao H; Boyd LF; Schuck P Curr Protoc Protein Sci; 2017 Apr; 88():20.2.1-20.2.25. PubMed ID: 28369667 [TBL] [Abstract][Full Text] [Related]
13. Interpreting kinetic rate constants from optical biosensor data recorded on a decaying surface. Joss L; Morton TA; Doyle ML; Myszka DG Anal Biochem; 1998 Aug; 261(2):203-10. PubMed ID: 9716423 [TBL] [Abstract][Full Text] [Related]
14. Ligand loading at the surface of an optical biosensor and its effect upon the kinetics of protein-protein interactions. Edwards PR; Lowe PA; Leatherbarrow RJ J Mol Recognit; 1997; 10(3):128-34. PubMed ID: 9408828 [TBL] [Abstract][Full Text] [Related]
15. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. O'Shannessy DJ; Brigham-Burke M; Soneson KK; Hensley P; Brooks I Anal Biochem; 1993 Aug; 212(2):457-68. PubMed ID: 8214588 [TBL] [Abstract][Full Text] [Related]
16. Kinetic analysis of analyte binding by optical biosensors: hydrodynamic penetration of the analyte flow into the polymer matrix reduces the influence of mass transport. Witz J Anal Biochem; 1999 Jun; 270(2):201-6. PubMed ID: 10334837 [TBL] [Abstract][Full Text] [Related]
17. Theoretical and experimental considerations of the pseudo-first-order approximation in conventional kinetic analysis of IAsys biosensor data. Hall DR; Gorgani NN; Altin JG; Winzor DJ Anal Biochem; 1997 Nov; 253(2):145-55. PubMed ID: 9367496 [TBL] [Abstract][Full Text] [Related]
18. Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation. Svitel J; Boukari H; Van Ryk D; Willson RC; Schuck P Biophys J; 2007 Mar; 92(5):1742-58. PubMed ID: 17158569 [TBL] [Abstract][Full Text] [Related]
19. Studies of protein interactions by biosensor technology: an alternative approach to the analysis of sensorgrams deviating from pseudo-first-order kinetic behavior. Bowles MR; Hall DR; Pond SM; Winzor DJ Anal Biochem; 1997 Jan; 244(1):133-43. PubMed ID: 9025919 [TBL] [Abstract][Full Text] [Related]