These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9266264)

  • 21. Interaction between Borrelia burgdorferi and endothelium in vitro.
    Szczepanski A; Furie MB; Benach JL; Lane BP; Fleit HB
    J Clin Invest; 1990 May; 85(5):1637-47. PubMed ID: 2332509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery.
    Montgomery RR; Nathanson MH; Malawista SE
    J Immunol; 1993 Feb; 150(3):909-15. PubMed ID: 8423346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiology of the Lyme disease spirochete, Borrelia burgdorferi, in ixodid ticks.
    Burgdorfer W; Hayes SF; Corwin D
    Rev Infect Dis; 1989; 11 Suppl 6():S1442-50. PubMed ID: 2682956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions.
    Motaleb MA; Corum L; Bono JL; Elias AF; Rosa P; Samuels DS; Charon NW
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):10899-904. PubMed ID: 10995478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth kinetics of the Lyme disease spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini).
    Piesman J; Oliver JR; Sinsky RJ
    Am J Trop Med Hyg; 1990 Apr; 42(4):352-7. PubMed ID: 2331043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The generation of enzymatically active plasmin on the surface of spirochetes.
    Coleman JL; Benach JL
    Methods; 2000 Jun; 21(2):133-41. PubMed ID: 10816374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Borrelia burgdorferi infections in the white-footed mouse, deer mouse, and fulvous harvest mouse detected by needle aspiration of spirochetes.
    NieLin G; Kocan AA
    J Wildl Dis; 1993 Apr; 29(2):214-8. PubMed ID: 8487370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymerase chain reaction amplification of culture supernatants for rapid detection of Borrelia burgdorferi.
    Schwartz I; Bittker S; Bowen SL; Cooper D; Pavia C; Wormser GP
    Eur J Clin Microbiol Infect Dis; 1993 Nov; 12(11):879-82. PubMed ID: 8112365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures.
    Veinović G; Ružić-Sabljić E; Strle F; Cerar T
    PLoS One; 2016; 11(6):e0157706. PubMed ID: 27310556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immune evasion by tickborne and host-adapted Borrelia burgdorferi.
    de Silva AM; Fikrig E; Hodzic E; Kantor FS; Telford SR; Barthold SW
    J Infect Dis; 1998 Feb; 177(2):395-400. PubMed ID: 9466527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Fc gamma receptors in triggering host cell activation and cytokine release by Borrelia burgdorferi.
    Talkington J; Nickell SP
    Infect Immun; 2001 Jan; 69(1):413-9. PubMed ID: 11119532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Invasion of human tissue ex vivo by Borrelia burgdorferi.
    Duray PH; Yin SR; Ito Y; Bezrukov L; Cox C; Cho MS; Fitzgerald W; Dorward D; Zimmerberg J; Margolis L
    J Infect Dis; 2005 May; 191(10):1747-54. PubMed ID: 15838803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solitary erythema migrans in Georgia and South Carolina.
    Felz MW; Chandler FW; Oliver JH; Rahn DW; Schriefer ME
    Arch Dermatol; 1999 Nov; 135(11):1317-26. PubMed ID: 10566829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Entry of Borrelia burgdorferi into macrophages is end-on and leads to degradation in lysosomes.
    Montgomery RR; Malawista SE
    Infect Immun; 1996 Jul; 64(7):2867-72. PubMed ID: 8698527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Culture of Borrelia burgdorferi on six solid media.
    Preac-Mursic V; Wilske B; Reinhardt S
    Eur J Clin Microbiol Infect Dis; 1991 Dec; 10(12):1076-9. PubMed ID: 1802702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inability of Ixodes cookei and Amblyomma americanum nymphs (Acari: Ixodidae) to transmit Borrelia burgdorferi.
    Ryder JW; Pinger RR; Glancy T
    J Med Entomol; 1992 May; 29(3):525-30. PubMed ID: 1625302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of human monocytic cells by Borrelia burgdorferi and Treponema pallidum is facilitated by CD14 and correlates with surface exposure of spirochetal lipoproteins.
    Sellati TJ; Bouis DA; Caimano MJ; Feulner JA; Ayers C; Lien E; Radolf JD
    J Immunol; 1999 Aug; 163(4):2049-56. PubMed ID: 10438943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression Profiles of Toll-Like Receptors in the Differentiation of an Infection with Borrelia burgdorferi Sensu Lato Spirochetes.
    Dudek S; Ziółko E; Kimsa-Dudek M; Solarz K; Mazurek U; Wierzgoń A; Kokot T; Muc-Wierzgoń M
    Arch Immunol Ther Exp (Warsz); 2017 Apr; 65(2):175-182. PubMed ID: 27604757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva.
    Menten-Dedoyart C; Faccinetto C; Golovchenko M; Dupiereux I; Van Lerberghe PB; Dubois S; Desmet C; Elmoualij B; Baron F; Rudenko N; Oury C; Heinen E; Couvreur B
    J Immunol; 2012 Dec; 189(11):5393-401. PubMed ID: 23109724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Murine model for lymphocytic tropism by Borrelia burgdorferi.
    Dorward DW; Larson RS
    Infect Immun; 2001 Mar; 69(3):1428-32. PubMed ID: 11179308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.