These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9266419)

  • 1. Loss of dopaminergic neurons in parkinsonism: possible role of reactive dopamine metabolites.
    Hastings TG; Zigmond MJ
    J Neural Transm Suppl; 1997; 49():103-10. PubMed ID: 9266419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease.
    Nakao N; Shintani-Mizushima A; Kakishita K; Itakura T
    Exp Neurol; 2004 Jul; 188(1):65-73. PubMed ID: 15191803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28.
    Youdim MB; Stephenson G; Ben Shachar D
    Ann N Y Acad Sci; 2004 Mar; 1012():306-25. PubMed ID: 15105275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications.
    Zigmond MJ; Abercrombie ED; Berger TW; Grace AA; Stricker EM
    Trends Neurosci; 1990 Jul; 13(7):290-6. PubMed ID: 1695406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments.
    Schwarting RK; Huston JP
    Prog Neurobiol; 1996 Oct; 50(2-3):275-331. PubMed ID: 8971983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential neurotoxic "agents provocateurs" in Parkinson's disease.
    Collins MA; Neafsey EJ
    Neurotoxicol Teratol; 2002; 24(5):571-7. PubMed ID: 12200188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parkinson's disease: studies with an animal model.
    Zigmond MJ; Stricker EM
    Life Sci; 1984 Jul; 35(1):5-18. PubMed ID: 6146085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology of the normal and dopamine-depleted basal ganglia: insights into levodopa pharmacotherapy.
    Grace AA
    Mov Disord; 2008; 23 Suppl 3():S560-9. PubMed ID: 18781673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell death of dopamine neurons in aging and Parkinson's disease.
    Naoi M; Maruyama W
    Mech Ageing Dev; 1999 Nov; 111(2-3):175-88. PubMed ID: 10656535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia.
    Lee J; Zhu WM; Stanic D; Finkelstein DI; Horne MH; Henderson J; Lawrence AJ; O'Connor L; Tomas D; Drago J; Horne MK
    Brain; 2008 Jun; 131(Pt 6):1574-87. PubMed ID: 18487277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease.
    Xu J; Kao SY; Lee FJ; Song W; Jin LW; Yankner BA
    Nat Med; 2002 Jun; 8(6):600-6. PubMed ID: 12042811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DopAmide: Novel, Water-Soluble, Slow-Release l-dihydroxyphenylalanine (l-DOPA) Precursor Moderates l-DOPA Conversion to Dopamine and Generates a Sustained Level of Dopamine at Dopaminergic Neurons.
    Atlas D
    CNS Neurosci Ther; 2016 Jun; 22(6):461-7. PubMed ID: 26861609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Parkinson's disease.
    Youdim MB; Riederer P
    Sci Am; 1997 Jan; 276(1):52-9. PubMed ID: 8972618
    [No Abstract]   [Full Text] [Related]  

  • 15. Enkephalinergic mechanisms in the "compensated" phase of Parkinson's disease.
    Sandyk R
    Int J Neurosci; 1988 Oct; 42(3-4):301-3. PubMed ID: 3061957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amine-related neurotoxins in Parkinson's disease: past, present, and future.
    Nagatsu T
    Neurotoxicol Teratol; 2002; 24(5):565-9. PubMed ID: 12200187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress to dopaminergic neurons as models of Parkinson's disease.
    Gille G; Hung ST; Reichmann H; Rausch WD
    Ann N Y Acad Sci; 2004 Jun; 1018():533-40. PubMed ID: 15240412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Levodopa peak response time reflects severity of dopamine neuron loss in Parkinson's disease.
    Sohn YH; Metman LV; Bravi D; Linfante I; Aotsuka A; Mouradian MM; Chase TN
    Neurology; 1994 Apr; 44(4):755-7. PubMed ID: 8164839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial damage to nigrostriatal bundle: compensatory changes and the action of L-dopa.
    Zigmond MJ; Abercrombie ED; Stricker EM
    J Neural Transm Suppl; 1990; 29():217-32. PubMed ID: 2193107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic neurons protected from degeneration by GDNF gene therapy.
    Choi-Lundberg DL; Lin Q; Chang YN; Chiang YL; Hay CM; Mohajeri H; Davidson BL; Bohn MC
    Science; 1997 Feb; 275(5301):838-41. PubMed ID: 9012352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.