BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 9266503)

  • 1. Coenzyme Q deficiency in mitochondria: kinetic saturation versus physical saturation.
    Lenaz G; Parenti Castelli G; Fato ; D'Aurelio M; Bovina C; Formiggini G; Marchetti M; Estornell E; Rauchova H
    Mol Aspects Med; 1997; 18 Suppl():S25-31. PubMed ID: 9266503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saturation kinetics of coenzyme Q in NADH oxidation: rate enhancement by incorporation of excess quinone.
    Fato R; Bernardo SD; Estornell E; Parentic Castelli G; Lenaz G
    Mol Aspects Med; 1997; 18 Suppl():S269-73. PubMed ID: 9266535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An updating of the biochemical function of coenzyme Q in mitochondria.
    Lenaz G; Fato R; Castelluccio C; Cavazzoni M; Estornell E; Huertas JF; Pallotti F; Parenti Castelli G; Rauchova H
    Mol Aspects Med; 1994; 15 Suppl():s29-36. PubMed ID: 7752842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria.
    Estornell E; Fato R; Castelluccio C; Cavazzoni M; Parenti Castelli G; Lenaz G
    FEBS Lett; 1992 Oct; 311(2):107-9. PubMed ID: 1327877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deficiency in respiratory complex I in heart mitochondria from vitamin A-deficient rats is counteracted by an increase in coenzyme Q.
    Estornell E; Tormo JR; Barber T
    Biochem Biophys Res Commun; 1997 Apr; 233(2):451-4. PubMed ID: 9144556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Redox state of the electron-transport carriers in cardiac mitochondria: a study by the method of low-temperature EPR spectroscopy].
    Ruuge EK; Lakomkin VL; Timoshin AA
    Biofizika; 1997; 42(6):1240-6. PubMed ID: 9490110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective effect of endogenous coenzyme Q on both lipid peroxidation and respiratory chain inactivation induced by an adriamycin-iron complex.
    Solaini G; Landi L; Pasquali P; Rossi CA
    Biochem Biophys Res Commun; 1987 Sep; 147(2):572-80. PubMed ID: 3632687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between succinate dehydrogenase and ubiquinone-binding protein from succinate-ubiquinone reductase.
    Yu L; Yu CA
    Biochim Biophys Acta; 1980 Nov; 593(1):24-38. PubMed ID: 7426645
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of Q metabolites and related compounds on mitochondrial succinate and NADH oxidase systems.
    Okamoto K; Kawada M; Watanabe M; Kobayashi S; Imada I; Morimoto H
    Biochim Biophys Acta; 1982 Oct; 682(1):145-51. PubMed ID: 7138851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid ubiquinone: novel inhibitor of mitochondrial complex I.
    Yabunaka H; Kenmochi A; Nakatogawa Y; Sakamoto K; Miyoshi H
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):106-12. PubMed ID: 12460667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria.
    Rauchová H; Fato R; Drahota Z; Lenaz G
    Arch Biochem Biophys; 1997 Aug; 344(1):235-41. PubMed ID: 9244403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria.
    Ackrell BA; Maguire JJ; Dallman PR; Kearney EB
    J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2.
    Genova ML; Ventura B; Giuliano G; Bovina C; Formiggini G; Parenti Castelli G; Lenaz G
    FEBS Lett; 2001 Sep; 505(3):364-8. PubMed ID: 11576529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and properties of a mitochondrial protein that converts succinate dehydrogenase into succinate-ubiquinone oxidoreductase.
    Yu CA; Yu L
    Biochemistry; 1980 Jul; 19(15):3579-85. PubMed ID: 6250572
    [No Abstract]   [Full Text] [Related]  

  • 17. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The function of coenzyme Q in mitochondria.
    Lenaz G; Fato R; Castelluccio C; Genova ML; Bovina C; Estornell E; Valls V; Pallotti F; Parenti Castelli G
    Clin Investig; 1993; 71(8 Suppl):S66-70. PubMed ID: 8241708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the sidedness of the ubiquinone redox cycle. Kinetic studies in mitochondrial membranes.
    Lenaz G; Landi L; Cabrini L; Pasquali P; Sechi AM; Ozawa T
    Biochem Biophys Res Commun; 1978 Dec; 85(3):1047-53. PubMed ID: 736948
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.