BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9266666)

  • 1. Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37 degrees C but not at 43 degrees C.
    Ivic A; Olden D; Wallington EJ; Lund PA
    Gene; 1997 Jul; 194(1):1-8. PubMed ID: 9266666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent.
    Gould PS; Burgar HR; Lund PA
    Cell Stress Chaperones; 2007; 12(2):123-31. PubMed ID: 17688191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An arginine residue (Arg101), which is conserved in many GroEL homologues, is required for interactions between the two heptameric rings.
    Jones S; Wallington EJ; George R; Lund PA
    J Mol Biol; 1998 Oct; 282(4):789-800. PubMed ID: 9743627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth.
    Rodríguez-Quiñones F; Maguire M; Wallington EJ; Gould PS; Yerko V; Downie JA; Lund PA
    Arch Microbiol; 2005 May; 183(4):253-65. PubMed ID: 15830189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes.
    Wallington EJ; Lund PA
    Microbiology (Reading); 1994 Jan; 140 ( Pt 1)():113-22. PubMed ID: 7909257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties.
    George R; Kelly SM; Price NC; Erbse A; Fisher M; Lund PA
    Biochem Biophys Res Commun; 2004 Nov; 324(2):822-8. PubMed ID: 15474501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional consequences of single:double ring transitions in chaperonins: life in the cold.
    Ferrer M; Lünsdorf H; Chernikova TN; Yakimov M; Timmis KN; Golyshin PN
    Mol Microbiol; 2004 Jul; 53(1):167-82. PubMed ID: 15225312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum.
    Gould P; Maguire M; Lund PA
    Arch Microbiol; 2007 Jan; 187(1):1-14. PubMed ID: 16944097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis.
    Bertsch U; Soll J
    Plant Mol Biol; 1995 Dec; 29(5):1039-55. PubMed ID: 8555447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and nucleotide sequence of the groEL gene from the alkaliphilic Bacillus sp. strain C-125 and reactivation of thermally inactivated alpha-glucosidase by recombinant GroEL.
    Xu Y; Kobayashi T; Kudo T
    Biosci Biotechnol Biochem; 1996 Oct; 60(10):1633-6. PubMed ID: 8987660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo activities of GroEL minichaperones.
    Chatellier J; Hill F; Lund PA; Fersht AR
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9861-6. PubMed ID: 9707566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity.
    Kovács E; van der Vies SM; Glatz A; Török Z; Varvasovszki V; Horváth I; Vígh L
    Biochem Biophys Res Commun; 2001 Dec; 289(4):908-15. PubMed ID: 11735133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning, expression, and characterization of chaperonin-60 and chaperonin-10 from a thermophilic bacterium, Thermus thermophilus HB8.
    Amada K; Yohda M; Odaka M; Endo I; Ishii N; Taguchi H; Yoshida M
    J Biochem; 1995 Aug; 118(2):347-54. PubMed ID: 8543569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A carboxy-terminal deletion impairs the assembly of GroEL and confers a pleiotropic phenotype in Escherichia coli K-12.
    Burnett BP; Horwich AL; Low KB
    J Bacteriol; 1994 Nov; 176(22):6980-5. PubMed ID: 7961461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the growth rate of Escherichia coli DH5alpha at low temperature through engineering of GroEL/S chaperone system.
    Lee JH; Heo MA; Seo JH; Kim JH; Kim BG; Lee SG
    Biotechnol Bioeng; 2008 Feb; 99(3):515-20. PubMed ID: 17722091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonconserved carboxy-terminal segment of GroEL contributes to reaction temperature.
    Nakamura T; Tanaka M; Maruyama A; Higashi Y; Kurusu Y
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2498-504. PubMed ID: 15618620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable expression and rapid purification of Escherichia coli GroEL and GroES chaperonins.
    Kamireddi M; Eisenstein E; Reddy P
    Protein Expr Purif; 1997 Oct; 11(1):47-52. PubMed ID: 9325138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD.
    Ogawa J; Long SR
    Genes Dev; 1995 Mar; 9(6):714-29. PubMed ID: 7729688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and transcriptional analysis of groES and groEL genes from the thermophilic bacterium Clostridium thermocellum.
    Ciruela A; Cross S; Freedman RB; Hazlewood GP
    Gene; 1997 Feb; 186(1):143-7. PubMed ID: 9047357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.