These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9267595)

  • 1. The cellular mechanism underlying neuronal degeneration in glaucoma: parallels with Alzheimer's disease.
    Vickers JC
    Aust N Z J Ophthalmol; 1997 May; 25(2):105-9. PubMed ID: 9267595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma.
    Yücel YH; Zhang Q; Weinreb RN; Kaufman PL; Gupta N
    Prog Retin Eye Res; 2003 Jul; 22(4):465-81. PubMed ID: 12742392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIF-1 expression in retinal ganglion cells and optic nerve axons in glaucoma.
    Reszeć J; Zalewska R; Bernaczyk P; Chyczewski L
    Folia Histochem Cytobiol; 2012 Oct; 50(3):456-9. PubMed ID: 23042279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective nerve fibre loss in glaucoma: magnocellular or parvocellular.
    Graham SL
    Aust N Z J Ophthalmol; 1997 Aug; 25(3):189-91. PubMed ID: 9296291
    [No Abstract]   [Full Text] [Related]  

  • 5. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury.
    Chidlow G; Wood JP; Casson RJ
    PLoS One; 2014; 9(12):e114838. PubMed ID: 25535743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soluble amyloid beta oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma.
    Yin H; Chen L; Chen X; Liu X
    Med Hypotheses; 2008; 71(1):77-80. PubMed ID: 18406539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tau Accumulation, Altered Phosphorylation, and Missorting Promote Neurodegeneration in Glaucoma.
    Chiasseu M; Cueva Vargas JL; Destroismaisons L; Vande Velde C; Leclerc N; Di Polo A
    J Neurosci; 2016 May; 36(21):5785-98. PubMed ID: 27225768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model.
    Kashiwagi K; Ou B; Nakamura S; Tanaka Y; Suzuki M; Tsukahara S
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):154-9. PubMed ID: 12506068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension.
    Zhang S; Wang H; Lu Q; Qing G; Wang N; Wang Y; Li S; Yang D; Yan F
    Brain Res; 2009 Dec; 1303():131-43. PubMed ID: 19765568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain changes in glaucoma.
    Gupta N; Yücel YH
    Eur J Ophthalmol; 2003 Apr; 13 Suppl 3():S32-5. PubMed ID: 12749675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylamide effects on the macaque visual system. II. Retinogeniculate morphology.
    Eskin TA; Lapham LW; Maurissen JP; Merigan WH
    Invest Ophthalmol Vis Sci; 1985 Mar; 26(3):317-29. PubMed ID: 3972512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma.
    Vickers JC; Hof PR; Schumer RA; Wang RF; Podos SM; Morrison JH
    Aust N Z J Ophthalmol; 1997 Aug; 25(3):239-43. PubMed ID: 9296301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma.
    Leopold SA; Zeilbeck LF; Weber G; Seitz R; Bösl MR; Jägle H; Fuchshofer R; Tamm ER; Ohlmann A
    Sci Rep; 2017 Oct; 7(1):14274. PubMed ID: 29079753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Cerebrospinal Fluid Inflow to the Optic Nerve in Glaucoma.
    Mathieu E; Gupta N; Paczka-Giorgi LA; Zhou X; Ahari A; Lani R; Hanna J; Yücel YH
    Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):5876-5884. PubMed ID: 30543343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma.
    Neufeld AH
    Surv Ophthalmol; 1999 Jun; 43 Suppl 1():S129-35. PubMed ID: 10416755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma.
    Gupta V; You Y; Li J; Gupta V; Golzan M; Klistorner A; van den Buuse M; Graham S
    Biochim Biophys Acta; 2014 Sep; 1842(9):1567-78. PubMed ID: 24942931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Should we treat the brain in glaucoma?
    Gupta N; Yücel YH
    Can J Ophthalmol; 2007 Jun; 42(3):409-13. PubMed ID: 17508036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR Imaging of the Anterior Visual Pathway in Primary Open-Angle Glaucoma: Correlation with Octopus 101 Perimetry and Spectralis Optical Coherence Tomography Findings.
    Ersoz MG; Pekcevik Y; Ayintap E; Gunes İB; Mart DK; Yucel E; Türe G
    Curr Eye Res; 2017 Jul; 42(7):995-1001. PubMed ID: 28632031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions.
    Liu M; Duggan J; Salt TE; Cordeiro MF
    Exp Eye Res; 2011 Apr; 92(4):244-50. PubMed ID: 21310146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nodes of Ranvier in Glaucoma.
    Smith MA; Plyler ES; Dengler-Crish CM; Meier J; Crish SD
    Neuroscience; 2018 Oct; 390():104-118. PubMed ID: 30149050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.