BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9268023)

  • 1. Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae.
    Boscheinen O; Lyck R; Queitsch C; Treuter E; Zimarino V; Scharf KD
    Mol Gen Genet; 1997 Jul; 255(3):322-31. PubMed ID: 9268023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.
    Ikeda M; Mitsuda N; Ohme-Takagi M
    Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato.
    Hahn A; Bublak D; Schleiff E; Scharf KD
    Plant Cell; 2011 Feb; 23(2):741-55. PubMed ID: 21307284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1.
    Bharti K; Von Koskull-Döring P; Bharti S; Kumar P; Tintschl-Körbitzer A; Treuter E; Nover L
    Plant Cell; 2004 Jun; 16(6):1521-35. PubMed ID: 15131252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression.
    Chan-Schaminet KY; Baniwal SK; Bublak D; Nover L; Scharf KD
    J Biol Chem; 2009 Jul; 284(31):20848-57. PubMed ID: 19491106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of human heat shock transcription factors 1 and 2 in HeLa cells and yeast.
    Yuan CX; Czarnecka-Verner E; Gurley WB
    Cell Stress Chaperones; 1997 Dec; 2(4):263-75. PubMed ID: 9495283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins.
    Li M; Doll J; Weckermann K; Oecking C; Berendzen KW; Schöffl F
    Eur J Cell Biol; 2010; 89(2-3):126-32. PubMed ID: 19945192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?
    Nover L; Bharti K; Döring P; Mishra SK; Ganguli A; Scharf KD
    Cell Stress Chaperones; 2001 Jul; 6(3):177-89. PubMed ID: 11599559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum.
    Bharti K; Schmidt E; Lyck R; Heerklotz D; Bublak D; Scharf KD
    Plant J; 2000 May; 22(4):355-65. PubMed ID: 10849352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors.
    Baniwal SK; Bharti K; Chan KY; Fauth M; Ganguli A; Kotak S; Mishra SK; Nover L; Port M; Scharf KD; Tripp J; Weber C; Zielinski D; von Koskull-Döring P
    J Biosci; 2004 Dec; 29(4):471-87. PubMed ID: 15625403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity.
    Chen Y; Barlev NA; Westergaard O; Jakobsen BK
    EMBO J; 1993 Dec; 12(13):5007-18. PubMed ID: 8262043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues.
    Fragkostefanakis S; Mesihovic A; Simm S; Paupière MJ; Hu Y; Paul P; Mishra SK; Tschiersch B; Theres K; Bovy A; Schleiff E; Scharf KD
    Plant Physiol; 2016 Apr; 170(4):2461-77. PubMed ID: 26917685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules.
    Scharf KD; Heider H; Höhfeld I; Lyck R; Schmidt E; Nover L
    Mol Cell Biol; 1998 Apr; 18(4):2240-51. PubMed ID: 9528795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing.
    Liu J; Sun N; Liu M; Liu J; Du B; Wang X; Qi X
    Plant Physiol; 2013 May; 162(1):512-21. PubMed ID: 23503691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.