These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 9268327)
1. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
2. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426 [TBL] [Abstract][Full Text] [Related]
3. Conversion of aspartate aminotransferase into an L-aspartate beta-decarboxylase by a triple active-site mutation. Graber R; Kasper P; Malashkevich VN; Strop P; Gehring H; Jansonius JN; Christen P J Biol Chem; 1999 Oct; 274(44):31203-8. PubMed ID: 10531314 [TBL] [Abstract][Full Text] [Related]
4. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids. Hayashi H; Kuramitsu S; Inoue Y; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1989 Feb; 159(1):337-42. PubMed ID: 2564274 [TBL] [Abstract][Full Text] [Related]
5. Changing the reaction specificity of a pyridoxal-5'-phosphate-dependent enzyme. Graber R; Kasper P; Malashkevich VN; Sandmeier E; Berger P; Gehring H; Jansonius JN; Christen P Eur J Biochem; 1995 Sep; 232(2):686-90. PubMed ID: 7556224 [TBL] [Abstract][Full Text] [Related]
6. Noncoded amino acid replacement probes of the aspartate aminotransferase mechanism. Park Y; Luo J; Schultz PG; Kirsch JF Biochemistry; 1997 Aug; 36(34):10517-25. PubMed ID: 9265632 [TBL] [Abstract][Full Text] [Related]
7. Replacement of an interdomain residue Val39 of Escherichia coli aspartate aminotransferase affects the catalytic competence without altering the substrate specificity of the enzyme. Hayashi H; Kuramitsu S; Kagamiyama H J Biochem; 1991 May; 109(5):699-704. PubMed ID: 1917893 [TBL] [Abstract][Full Text] [Related]
8. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634 [TBL] [Abstract][Full Text] [Related]
9. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
10. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Cronin CN; Kirsch JF Biochemistry; 1988 Jun; 27(12):4572-9. PubMed ID: 3167000 [TBL] [Abstract][Full Text] [Related]
11. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties. Ziak M; Jäger J; Malashkevich VN; Gehring H; Jaussi R; Jansonius JN; Christen P Eur J Biochem; 1993 Feb; 211(3):475-84. PubMed ID: 8436109 [TBL] [Abstract][Full Text] [Related]
12. Conversion of tyrosine phenol-lyase to dicarboxylic amino acid beta-lyase, an enzyme not found in nature. Mouratou B; Kasper P; Gehring H; Christen P J Biol Chem; 1999 Jan; 274(3):1320-5. PubMed ID: 9880502 [TBL] [Abstract][Full Text] [Related]
13. The substrate activation process in the catalytic reaction of Escherichia coli aromatic amino acid aminotransferase. Islam MM; Hayashi H; Mizuguchi H; Kagamiyama H Biochemistry; 2000 Dec; 39(50):15418-28. PubMed ID: 11112527 [TBL] [Abstract][Full Text] [Related]
14. Examining the structural and chemical flexibility of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with unnatural amino acids. Gloss LM; Kirsch JF Biochemistry; 1995 Sep; 34(38):12323-32. PubMed ID: 7547975 [TBL] [Abstract][Full Text] [Related]
15. Chemical modification of a functional arginyl residue (Arg 292) of mitochondrial aspartate aminotransferase. Identification as the binding site for the distal carboxylate group of the substrate. Sandmeier E; Christen P J Biol Chem; 1982 Jun; 257(12):6745-50. PubMed ID: 7085600 [TBL] [Abstract][Full Text] [Related]
16. Replacement of active-site lysine-239 of thermostable aspartate aminotransferase by S-(2-aminoethyl)cysteine: properties of the mutant enzyme. Matsushima Y; Kim DW; Yoshimura T; Kuramitsu S; Kagamiyama H; Esaki N; Soda K J Biochem; 1994 Jan; 115(1):108-12. PubMed ID: 8188615 [TBL] [Abstract][Full Text] [Related]
17. Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase. Mizuguchi H; Hayashi H; Okada K; Miyahara I; Hirotsu K; Kagamiyama H Biochemistry; 2001 Jan; 40(2):353-60. PubMed ID: 11148029 [TBL] [Abstract][Full Text] [Related]
18. The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli. Almo SC; Smith DL; Danishefsky AT; Ringe D Protein Eng; 1994 Mar; 7(3):405-12. PubMed ID: 7909946 [TBL] [Abstract][Full Text] [Related]
19. Substitution of a lysyl residue for arginine 386 of Escherichia coli aspartate aminotransferase. Inoue Y; Kuramitsu S; Inoue K; Kagamiyama H; Hiromi K; Tanase S; Morino Y J Biol Chem; 1989 Jun; 264(16):9673-81. PubMed ID: 2498335 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking the pyridoxal 5'-phosphate-binding lysine residue. Malashkevich VN; Jäger J; Ziak M; Sauder U; Gehring H; Christen P; Jansonius JN Biochemistry; 1995 Jan; 34(2):405-14. PubMed ID: 7819232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]