BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 9268385)

  • 1. Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide.
    Zhen RG; Kim EJ; Rea PA
    J Biol Chem; 1997 Aug; 272(35):22340-8. PubMed ID: 9268385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N, N'-dicyclohexylcarbodi-imide.
    Yang SJ; Jiang SS; Kuo SY; Hung SH; Tam MF; Pan RL
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):641-6. PubMed ID: 10477275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps.
    Drozdowicz YM; Lu YP; Patel V; Fitz-Gibbon S; Miller JH; Rea PA
    FEBS Lett; 1999 Nov; 460(3):505-12. PubMed ID: 10556526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunological cross-reactivity between proton-pumping inorganic pyrophosphatases of widely phylogenic separated species.
    Nore BF; Sakai-Nore Y; Maeshima M; Baltscheffsky M; Nyrén P
    Biochem Biophys Res Commun; 1991 Dec; 181(3):962-7. PubMed ID: 1662506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of N,N'-dicyclohexylcarbodiimide-reactive glutamic and aspartic acid residues in Escherichia coli transhydrogenase and the exchange of these by site-specific mutagenesis.
    Glavas N; Ahmad S; Bragg PD; Olausson T; Rydström J
    J Biol Chem; 1993 Jul; 268(19):14125-30. PubMed ID: 8100227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase.
    Van RC; Pan YJ; Hsu SH; Huang YT; Hsiao YY; Pan RL
    Biochim Biophys Acta; 2005 Aug; 1709(1):84-94. PubMed ID: 16018964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid sequence similarities between the vacuolar proton-pumping inorganic pyrophosphatase and the c-subunit of F0F1-ATPases.
    Nyrén P; Sakai-Nore Y; Strid A
    Plant Cell Physiol; 1993 Mar; 34(2):375-8. PubMed ID: 8199778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.
    Hsiao YY; Van RC; Hung SH; Lin HH; Pan RL
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):190-9. PubMed ID: 14871497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana.
    Sarafian V; Kim Y; Poole RJ; Rea PA
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1775-9. PubMed ID: 1311852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flip side of the
    Scholz-Starke J; Primo C; Yang J; Kandel R; Gaxiola RA; Hirschi KD
    J Biol Chem; 2019 Jan; 294(4):1290-1299. PubMed ID: 30510138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana.
    Zancani M; Skiera LA; Sanders D
    Biochim Biophys Acta; 2007 Feb; 1768(2):311-6. PubMed ID: 17113565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of vacuolar H(+)-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis.
    Kim EJ; Zhen RG; Rea PA
    J Biol Chem; 1995 Feb; 270(6):2630-5. PubMed ID: 7852329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi.
    Hill JE; Scott DA; Luo S; Docampo R
    Biochem J; 2000 Oct; 351(Pt 1):281-8. PubMed ID: 10998372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of cytosolically oriented maleimide-reactive domain of vacuolar H(+)-pyrophosphatase.
    Zhen RG; Kim EJ; Rea PA
    J Biol Chem; 1994 Sep; 269(37):23342-50. PubMed ID: 8083239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum.
    Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R
    J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue.
    Hsiao YY; Van RC; Hung HH; Pan RL
    J Protein Chem; 2002 Jan; 21(1):51-8. PubMed ID: 11902667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transmembrane domain 6 of vacuolar H(+)-pyrophosphatase mediates protein targeting and proton transport.
    Pan YJ; Lee CH; Hsu SH; Huang YT; Lee CH; Liu TH; Chen YW; Lin SM; Pan RL
    Biochim Biophys Acta; 2011 Jan; 1807(1):59-67. PubMed ID: 20937245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of tyrosine residue in the inhibition of plant vacuolar H(+)-pyrophosphatase by tetranitromethane.
    Yang SJ; Jiang SS; Tzeng CM; Kuo SY; Hung SH; Pan RL
    Biochim Biophys Acta; 1996 May; 1294(1):89-97. PubMed ID: 8639720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant proton pumping pyrophosphatase: the potential for its pyrophosphate synthesis activity to modulate plant growth.
    Primo C; Pizzio GA; Yang J; Gaxiola RA; Scholz-Starke J; Hirschi KD
    Plant Biol (Stuttg); 2019 Nov; 21(6):989-996. PubMed ID: 31081197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.