These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9268562)

  • 1. Electrodynamic Trapping of Aerocolloidal Particles: Experimental and Theoretical Trapping Limits.
    Aardahl CL; Vehring R; Weber R; Schweiger G; Davis EJ; Wiedensohler A
    J Colloid Interface Sci; 1997 Aug; 192(1):228-37. PubMed ID: 9268562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol.
    Qi C; Kulkarni P
    Aerosol Sci Technol; 2013 Jan; 47(1):81-92. PubMed ID: 26512158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between an unipolar corona charger and a polonium-based bipolar neutralizer for the analysis of nanosized particles and biopolymers.
    Laschober C; Kaufman SL; Reischl G; Allmaier G; SzymanskiWladyslaw W
    J Nanosci Nanotechnol; 2006 May; 6(5):1474-81. PubMed ID: 16792384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel electrostatic precipitator using unipolar soft X-ray charger for removing fine particles: Application to a dry de-NOX process.
    Choi J; Kim HJ; Kim YJ; Kim SS; Jung JH
    J Hazard Mater; 2016 Feb; 303():48-54. PubMed ID: 26513563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in penetration of submicrometric particles through electrostatic filtering facepieces during exposure to paraffin oil aerosol.
    Plebani C; Listrani S; Tranfo G; Tombolini F
    J Occup Environ Hyg; 2012; 9(9):556-61. PubMed ID: 22862434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5-40 nm.
    Kallinger P; Szymanski WW
    J Nanopart Res; 2015; 17(4):171. PubMed ID: 25866470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion attachment rates and collection forces on dust particles in a plasma sheath with finite ion inertia and mobility.
    Ono T; Kortshagen UR; Hogan CJ
    Phys Rev E; 2020 Dec; 102(6-1):063212. PubMed ID: 33465977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of electrostatic charge on deposition of uniformly charged monodisperse particles in the nasal extrathoracic airways of an infant.
    Azhdarzadeh M; Olfert JS; Vehring R; Finlay WH
    J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):30-4. PubMed ID: 24689985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced-charge electroosmotic trapping of particles.
    Ren Y; Liu W; Jia Y; Tao Y; Shao J; Ding Y; Jiang H
    Lab Chip; 2015 May; 15(10):2181-91. PubMed ID: 25828535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force and Velocity Analysis of Particles Manipulated by Toroidal Vortex on Optoelectrokinetic Microfluidic Platform.
    Zhang SJ; Yang ZR; Kuo JN
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle spatial distribution on particle deposition in ventilation rooms.
    Zhao B; Wu J
    J Hazard Mater; 2009 Oct; 170(1):449-56. PubMed ID: 19467777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of trapping force on metallic mie particles.
    Ke PC; Gu M
    Appl Opt; 1999 Jan; 38(1):160-7. PubMed ID: 18305599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the deposition of unipolarly charged particles in the human respiratory tract.
    Melandri C; Prodi V; Tarroni G; Formignani M; De Zaiacomo T; Bompane GF; Maestri G
    Inhaled Part; 1975 Sep; 4 Pt 1():193-201. PubMed ID: 1236156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of acoustic trapping capability on the orientation and shape of particles.
    Liu Y; Hu J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1443-50. PubMed ID: 20529719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using dynamic light scattering to characterize mixed phase single particles levitated in a quasi-electrostatic balance.
    Krieger UK; Zardini AA
    Faraday Discuss; 2008; 137():377-88; discussion 403-24. PubMed ID: 18214115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opto-thermal oscillation and trapping of light absorbing particles.
    Zhong MC; Liu AY; Ji F
    Opt Express; 2019 Oct; 27(21):29730-29737. PubMed ID: 31684230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical measurements from single levitated particles using a linear electrodynamic quadrupole trap.
    Hart MB; Sivaprakasam V; Eversole JD; Johnson LJ; Czege J
    Appl Opt; 2015 Nov; 54(31):F174-81. PubMed ID: 26560606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.
    Zhao C; Yang C
    Soft Matter; 2018 Feb; 14(6):1056-1066. PubMed ID: 29335710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.