These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 9268653)
1. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. Li J; Esberg B; Curran JF; Björk GR J Mol Biol; 1997 Aug; 271(2):209-21. PubMed ID: 9268653 [TBL] [Abstract][Full Text] [Related]
2. Structural requirements for the formation of 1-methylguanosine in vivo in tRNA(Pro)GGG of Salmonella typhimurium. Qian Q; Björk GR J Mol Biol; 1997 Feb; 266(2):283-96. PubMed ID: 9047363 [TBL] [Abstract][Full Text] [Related]
3. Structural alterations far from the anticodon of the tRNAProGGG of Salmonella typhimurium induce +1 frameshifting at the peptidyl-site. Qian Q; Björk GR J Mol Biol; 1997 Nov; 273(5):978-92. PubMed ID: 9367785 [TBL] [Abstract][Full Text] [Related]
4. 1-Methylguanosine deficiency of tRNA influences cognate codon interaction and metabolism in Salmonella typhimurium. Li JN; Björk GR J Bacteriol; 1995 Nov; 177(22):6593-600. PubMed ID: 7592438 [TBL] [Abstract][Full Text] [Related]
5. Distinct functional classes of ram mutations in 16S rRNA. McClory SP; Devaraj A; Fredrick K RNA; 2014 Apr; 20(4):496-504. PubMed ID: 24572811 [TBL] [Abstract][Full Text] [Related]
6. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. Hagervall TG; Tuohy TM; Atkins JF; Björk GR J Mol Biol; 1993 Aug; 232(3):756-65. PubMed ID: 7689113 [TBL] [Abstract][Full Text] [Related]
7. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. Geggier P; Dave R; Feldman MB; Terry DS; Altman RB; Munro JB; Blanchard SC J Mol Biol; 2010 Jun; 399(4):576-95. PubMed ID: 20434456 [TBL] [Abstract][Full Text] [Related]
8. Role of tRNA modification in translational fidelity. Hagervall TG; Ericson JU; Esberg KB; Li JN; Björk GR Biochim Biophys Acta; 1990 Aug; 1050(1-3):263-6. PubMed ID: 2207153 [TBL] [Abstract][Full Text] [Related]
9. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA. Yamane T; Miller DL; Hopfield JJ Biochemistry; 1981 Jan; 20(2):449-52. PubMed ID: 7008845 [TBL] [Abstract][Full Text] [Related]
10. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. Tubulekas I; Hughes D J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899 [TBL] [Abstract][Full Text] [Related]
11. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. Bouadloun F; Srichaiyo T; Isaksson LA; Björk GR J Bacteriol; 1986 Jun; 166(3):1022-7. PubMed ID: 3086285 [TBL] [Abstract][Full Text] [Related]
12. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. Pape T; Wintermeyer W; Rodnina M EMBO J; 1999 Jul; 18(13):3800-7. PubMed ID: 10393195 [TBL] [Abstract][Full Text] [Related]
13. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Gromadski KB; Rodnina MV Mol Cell; 2004 Jan; 13(2):191-200. PubMed ID: 14759365 [TBL] [Abstract][Full Text] [Related]
14. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA. Hornig H; Woolley P; Lührmann R J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008 [TBL] [Abstract][Full Text] [Related]
15. Stoichiometry for the elongation factor Tu.aminoacyl-tRNA complex switches with temperature. Bilgin N; Ehrenberg M Biochemistry; 1995 Jan; 34(3):715-9. PubMed ID: 7827027 [TBL] [Abstract][Full Text] [Related]
16. Substrate recognition mechanism of tRNA-targeting ribonuclease, colicin D, and an insight into tRNA cleavage-mediated translation impairment. Ogawa T; Takahashi K; Ishida W; Aono T; Hidaka M; Terada T; Masaki H RNA Biol; 2021 Aug; 18(8):1193-1205. PubMed ID: 33211605 [TBL] [Abstract][Full Text] [Related]
17. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Piepenburg O; Pape T; Pleiss JA; Wintermeyer W; Uhlenbeck OC; Rodnina MV Biochemistry; 2000 Feb; 39(7):1734-8. PubMed ID: 10677222 [TBL] [Abstract][Full Text] [Related]
18. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome. Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527 [TBL] [Abstract][Full Text] [Related]
19. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related]
20. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. Jacquet E; Parmeggiani A Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]