BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9268958)

  • 1. Temporal inhomogeneity in brachial artery blood flow during forearm exercise.
    Robergs RA; Icenogle MV; Hudson TL; Greene ER
    Med Sci Sports Exerc; 1997 Aug; 29(8):1021-7. PubMed ID: 9268958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex.
    Gonzales JU; Thompson BC; Thistlethwaite JR; Harper AJ; Scheuermann BW
    J Appl Physiol (1985); 2007 Dec; 103(6):1950-7. PubMed ID: 17932302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of acetylcholine and nitric oxide to forearm blood flow at exercise onset and recovery.
    Shoemaker JK; Halliwill JR; Hughson RL; Joyner MJ
    Am J Physiol; 1997 Nov; 273(5):H2388-95. PubMed ID: 9374776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasoconstrictor responsiveness in contracting human muscle: influence of contraction frequency, contractile work, and metabolic rate.
    Kruse NT; Hughes WE; Ueda K; Casey DP
    Eur J Appl Physiol; 2017 Aug; 117(8):1697-1706. PubMed ID: 28624852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during KIR channel and Na(+) /K(+) -ATPase inhibition.
    Crecelius AR; Kirby BS; Hearon CM; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2015 Jun; 593(12):2735-51. PubMed ID: 25893955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction.
    Walser B; Giordano RM; Stebbins CL
    Eur J Appl Physiol; 2006 Jun; 97(3):347-54. PubMed ID: 16770472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximal strength training-induced improvements in forearm work efficiency are associated with reduced blood flow.
    Berg OK; Nyberg SK; Windedal TM; Wang E
    Am J Physiol Heart Circ Physiol; 2018 Apr; 314(4):H853-H862. PubMed ID: 29351462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method.
    Kagaya A; Homma S
    Acta Physiol Scand; 1997 Jul; 160(3):257-65. PubMed ID: 9246389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue-independent alterations in muscle activation and effort perception during forearm exercise: role of local oxygen delivery.
    Drouin PJ; Kohoko ZIN; Mew OK; Lynn MJT; Fenuta AM; Tschakovsky ME
    J Appl Physiol (1985); 2019 Jul; 127(1):111-121. PubMed ID: 31070953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow and muscle oxygen uptake at the onset and end of moderate and heavy dynamic forearm exercise.
    Van Beekvelt MC; Shoemaker JK; Tschakovsky ME; Hopman MT; Hughson RL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jun; 280(6):R1741-7. PubMed ID: 11353679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of chronic intermittent external compressions on forearm blood flow capacity in humans.
    Roseguini BT; Sheldon R; Stroup A; Bell JW; Maurer D; Crist BD; Laughlin MH; Newcomer SC
    Eur J Appl Physiol; 2011 Mar; 111(3):509-19. PubMed ID: 20890711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed meal and light exercise each recruit muscle capillaries in healthy humans.
    Vincent MA; Clerk LH; Lindner JR; Price WJ; Jahn LA; Leong-Poi H; Barrett EJ
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1191-7. PubMed ID: 16682488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid-onset vasodilator responses to exercise in humans: Effect of increased baseline blood flow.
    Dillon GA; Shepherd JRA; Casey DP; Dinenno FA; Curry TB; Joyner MJ; Ranadive SM
    Exp Physiol; 2020 Jan; 105(1):88-95. PubMed ID: 31762131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic endurance exercise training offsets the age-related attenuation in contraction-induced rapid vasodilation.
    Hughes WE; Ueda K; Casey DP
    J Appl Physiol (1985); 2016 Jun; 120(11):1335-42. PubMed ID: 27032899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.
    Nyberg SK; Berg OK; Helgerud J; Wang E
    J Appl Physiol (1985); 2017 Apr; 122(4):907-917. PubMed ID: 28057820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brief muscle hypoperfusion/hyperemia: an ergogenic aid?
    Libonati JR; Howell AK; Incanno NM; Pettee KK; Glassberg HL
    J Strength Cond Res; 2001 Aug; 15(3):362-6. PubMed ID: 11710666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.
    Richards JC; Crecelius AR; Kirby BS; Larson DG; Dinenno FA
    Exp Physiol; 2012 Jun; 97(6):750-61. PubMed ID: 22327330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender differences in brachial blood flow during fatiguing intermittent handgrip.
    Saito Y; Iemitsu M; Otsuki T; Maeda S; Ajisaka R
    Med Sci Sports Exerc; 2008 Apr; 40(4):684-90. PubMed ID: 18317376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forearm blood flow by Doppler ultrasound during test and exercise: tests of day-to-day repeatability.
    Shoemaker JK; Pozeg ZI; Hughson RL
    Med Sci Sports Exerc; 1996 Sep; 28(9):1144-9. PubMed ID: 8883002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.