BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9269769)

  • 1. Platelet adhesion to collagen under flow causes dissociation of a phosphoprotein complex of heat-shock proteins and protein phosphatase 1.
    Polanowska-Grabowska R; Simon CG; Falchetto R; Shabanowitz J; Hunt DF; Gear AR
    Blood; 1997 Aug; 90(4):1516-26. PubMed ID: 9269769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet adhesion to collagen activates a phosphoprotein complex of heat-shock proteins and protein phosphatase 1.
    Gear AR; Simon CG; Polanowska-Grabowska R
    J Neural Transm (Vienna); 1997; 104(10):1037-47. PubMed ID: 9503256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-shock proteins and platelet function.
    Polanowska-Grabowska R; Gear AR
    Platelets; 2000 Feb; 11(1):6-22. PubMed ID: 10938876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
    Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T
    Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A.
    Cairns J; Qin S; Philp R; Tan YH; Guy GR
    J Biol Chem; 1994 Mar; 269(12):9176-83. PubMed ID: 7510704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat-shock protein 90 complexes in resting and thrombin-activated platelets.
    Suttitanamongkol S; Polanowska-Grabowska R; Gear AR
    Biochem Biophys Res Commun; 2002 Sep; 297(1):129-33. PubMed ID: 12220519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of protein kinase C is required for the stable attachment of adherent platelets to collagen but is not needed for the initial rapid adhesion under flow conditions.
    Polanowska-Grabowska R; Gear AR
    Arterioscler Thromb Vasc Biol; 1999 Dec; 19(12):3044-54. PubMed ID: 10591686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of phosphoprotein phosphatase 1 in collagen-platelet interaction.
    Chiang TM; Kang ES; Kang AH
    Thromb Res; 1996 Dec; 84(6):399-409. PubMed ID: 8987161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective dephosphorylation of the threonine(183) residue of ERK2 upon (alpha)llb(beta)3 engagement in platelets.
    Pawlowski M; Ragab A; Rosa JP; Bryckaert M
    FEBS Lett; 2002 Jun; 521(1-3):145-51. PubMed ID: 12096712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dephosphorylation of perilipin by protein phosphatases present in rat adipocytes.
    Clifford GM; McCormick DK; Londos C; Vernon RG; Yeaman SJ
    FEBS Lett; 1998 Sep; 435(1):125-9. PubMed ID: 9755872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-specific, transient interaction between integrins and calreticulin during cell adhesion to extracellular matrix proteins is dependent upon phosphorylation/dephosphorylation events.
    Coppolino MG; Dedhar S
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):41-50. PubMed ID: 10229657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells.
    Xu W; Yuan X; Jung YJ; Yang Y; Basso A; Rosen N; Chung EJ; Trepel J; Neckers L
    Cancer Res; 2003 Nov; 63(22):7777-84. PubMed ID: 14633703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serine/threonine phosphatases regulate platelet αIIbβ3 integrin receptor outside-in signaling mechanisms and clot retraction.
    Moscardó A; Santos MT; Latorre A; Madrid I; Vallés J
    Life Sci; 2013 Nov; 93(20):707-13. PubMed ID: 24096143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calyculin A and okadiac acid inhibit human platelet aggregation by blocking protein phosphatases types 1 and 2A.
    Nishikawa M; Toyoda H; Saito M; Morita K; Tawara I; Deguchi K; Kuno T; Shima H; Nagao M; Shirakawa S
    Cell Signal; 1994 Jan; 6(1):59-71. PubMed ID: 8011429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of protein phosphorylation and stress protein expression by okadaic acid on heat shock cells.
    Chen KD; Chu JJ; Lai YK
    J Cell Biochem; 1996 May; 61(2):255-65. PubMed ID: 9173089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role for protein phosphatase 2A in the regulation of Calu-3 epithelial Na+-K+-2Cl-, type 1 co-transport function.
    Liedtke CM; Wang X; Smallwood ND
    J Biol Chem; 2005 Jul; 280(27):25491-8. PubMed ID: 15899883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme.
    Alessi DR; Street AJ; Cohen P; Cohen PT
    Eur J Biochem; 1993 May; 213(3):1055-66. PubMed ID: 8389292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of okadaic acid-induced hyperphosphorylation of cytoskeletal proteins by heat preconditioning and its possible underlying mechanisms.
    Xu YF; Zhang YJ; Zhang AH; Zhang Q; Wu T; Wang JZ
    Cell Stress Chaperones; 2004; 9(3):304-12. PubMed ID: 15544168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphatase 1 associates with the integrin alphaIIb subunit and regulates signaling.
    Vijayan KV; Liu Y; Li TT; Bray PF
    J Biol Chem; 2004 Aug; 279(32):33039-42. PubMed ID: 15205468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine/threonine dephosphorylation may be involved in tyrosine phosphorylation: a new mode of signal transduction in platelets.
    Artçanuthurry V; Grelac F; Maclouf J; Martin-Cramer E; Levy-Tolédano S
    Semin Thromb Hemost; 1996; 22(4):317-26. PubMed ID: 8944416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.