These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 9269875)
1. Factors that influence microdialysis recovery. Comparison of experimental and theoretical microdialysis recoveries in rat liver. Stenken JA; Lunte CE; Southard MZ; Ståhle L J Pharm Sci; 1997 Aug; 86(8):958-66. PubMed ID: 9269875 [TBL] [Abstract][Full Text] [Related]
2. Monitoring in situ liver metabolism in rats using microdialysis. Comparison of microdialysis mass-transport model predictions to experimental metabolite generation data. Stenken JA; Ståhle L; Lunte CE; Southard MZ J Pharm Sci; 1998 Mar; 87(3):311-20. PubMed ID: 9523984 [TBL] [Abstract][Full Text] [Related]
3. In vivo inhibition of oxidative drug metabolism by, and acute toxicity of, 1-aminobenzotriazole (ABT). A tool for biochemical toxicology. Mico BA; Federowicz DA; Ripple MG; Kerns W Biochem Pharmacol; 1988 Jul; 37(13):2515-9. PubMed ID: 3390214 [TBL] [Abstract][Full Text] [Related]
4. [Diurnal rhythm of phenacetin and antipyrine elimination in rats]. Starek A; Rachtan R; Piekoszewski W Folia Med Cracov; 1990; 31(3):251-8. PubMed ID: 2097289 [TBL] [Abstract][Full Text] [Related]
5. Antipyrine concentrations in liver and blood monitored by microdialysis of unrestrained conscious rats. Kurata N; Inagaki M; Kobayashi S; Nishimura Y; Oguchi K; Yasuhara H Res Commun Chem Pathol Pharmacol; 1993 Mar; 79(3):363-9. PubMed ID: 8480081 [TBL] [Abstract][Full Text] [Related]
6. Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. Yokel RA; Allen DD; Burgio DE; McNamara PJ J Pharmacol Toxicol Methods; 1992 May; 27(3):135-42. PubMed ID: 1498341 [TBL] [Abstract][Full Text] [Related]
7. Mechanism-based inhibition of CYP1A2 by antofloxacin, an 8-NH2 derivative of levofloxacin in rats. Zhu Q; Liao J; Xie L; Wang GJ; Liu XD Xenobiotica; 2009 Apr; 39(4):293-301. PubMed ID: 19350452 [TBL] [Abstract][Full Text] [Related]
8. Effect of capillary efflux transport inhibition on the determination of probe recovery during in vivo microdialysis in the brain. Sun H; Bungay PM; Elmquist WF J Pharmacol Exp Ther; 2001 Jun; 297(3):991-1000. PubMed ID: 11356921 [TBL] [Abstract][Full Text] [Related]
9. In-vitro and in-vivo evaluations of cytochrome P450 1A2 interactions with nuciferine. Hu L; Xu W; Zhang X; Su J; Liu X; Li H; Zhang W J Pharm Pharmacol; 2010 May; 62(5):658-62. PubMed ID: 20609070 [TBL] [Abstract][Full Text] [Related]
10. Experimental and theoretical microdialysis studies of in situ metabolism. Stenken JA; Holunga DM; Decker SA; Sun L Anal Biochem; 2001 Mar; 290(2):314-23. PubMed ID: 11237334 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of baicalin on metabolism of phenacetin, a probe of CYP1A2, in human liver microsomes and in rats. Gao N; Qi B; Liu FJ; Fang Y; Zhou J; Jia LJ; Qiao HL PLoS One; 2014; 9(2):e89752. PubMed ID: 24587011 [TBL] [Abstract][Full Text] [Related]
12. Effects of Caffeic Acid and Quercetin on In Vitro Permeability, Metabolism and In Vivo Pharmacokinetics of Melatonin in Rats: Potential for Herb-Drug Interaction. Jana S; Rastogi H Eur J Drug Metab Pharmacokinet; 2017 Oct; 42(5):781-791. PubMed ID: 28070878 [TBL] [Abstract][Full Text] [Related]
13. Effect of an experimental malaria infection on the metabolism of phenacetin in the rat isolated perfused liver. Glazier AP; Kokwaro GO; Ismail S; Edwards G Xenobiotica; 1994 Aug; 24(8):785-93. PubMed ID: 7839701 [TBL] [Abstract][Full Text] [Related]
14. Effects of major tanshinones isolated from Danshen (Salvia miltiorrhiza) on rat CYP1A2 expression and metabolism of model CYP1A2 probe substrates. Wang X; Lee WY; Or PM; Yeung JH Phytomedicine; 2009 Aug; 16(8):712-25. PubMed ID: 19403289 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the assumptions of an ontogeny model of rat hepatic cytochrome P450 activity. Alcorn J; Elbarbry FA; Allouh MZ; McNamara PJ Drug Metab Dispos; 2007 Dec; 35(12):2225-31. PubMed ID: 17881659 [TBL] [Abstract][Full Text] [Related]
16. Application of Osmotic Pumps for Sustained Release of 1-Aminobenzotriazole and Inhibition of Cytochrome P450 Enzymes in Mice: Model Comparison with the Hepatic P450 Reductase Null Mouse. Stringer RA; Ferreira S; Rose J; Ronseaux S Drug Metab Dispos; 2016 Aug; 44(8):1213-6. PubMed ID: 27271368 [TBL] [Abstract][Full Text] [Related]
17. Effective dosing regimen of 1-aminobenzotriazole for inhibition of antipyrine clearance in rats, dogs, and monkeys. Balani SK; Zhu T; Yang TJ; Liu Z; He B; Lee FW Drug Metab Dispos; 2002 Oct; 30(10):1059-62. PubMed ID: 12228180 [TBL] [Abstract][Full Text] [Related]
18. The use of microdialysis for the study of drug kinetics: some methodological considerations illustrated with antipyrine in rat frontal cortex. Patsalos PN; Abed WT; Alavijeh MS; O'Connell MT Br J Pharmacol; 1995 Jun; 115(3):503-9. PubMed ID: 7582464 [TBL] [Abstract][Full Text] [Related]
19. Phenacetin O-deethylation is a useful tool for evaluation of hepatic functional reserve in rats with CCl(4)-induced chronic liver injury. Liu Z; Qu Z; Li X; Cai M; He P; Zhou M; Xiao J; Wang X J Surg Res; 2012 Jun; 175(2):e61-6. PubMed ID: 22341342 [TBL] [Abstract][Full Text] [Related]
20. Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance. Wattanachai N; Tassaneeyakul W; Rowland A; Elliot DJ; Bowalgaha K; Knights KM; Miners JO Drug Metab Dispos; 2012 May; 40(5):982-9. PubMed ID: 22331994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]